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Abstract— Cerebral autoregulation is a homeostatic mech-
anism which maintains blood flow despite changes in blood
pressure in order to meet local metabolic demands. Several
mechanisms play a role in cerebral autoregulation in order to
adjust vascular tone and caliber of the cerebral vessels, but the
exact etiology of the dynamics of these mechanism is not well
understood. In this study, we discuss two patient specific models
predicting cerebral blood flow velocity during postural change
from sitting to standing. One model characterises cerebral
autoregulation, the other describes the beat-to-beat distribution
of blood flow to the major regions of the brain. Both models
have been validated against experimental data from a healthy
young subject.

I. INTRODUCTION

Cerebral autoregulation (CA) maintains blood flow despite

changes in blood pressure. Typically, CA is assessed by

analyzing relations between arterial blood pressure (ABP)

and middle cerebral arterial (MCA) blood flow velocity

(BFV). Analysis of CA based only on these measurements is

far from ideal, but more detailed experimental interrogation

of the cerebrovascular physiology involves measurements

that are either invasive or that cannot quantify dynamics over

all relavent time scales. Since CA dynamics are difficult

to characterize directly, a number of methods have been

proposed to assess the health of the CA system using

only ABP and BFV measurements (examples include the

autoregulatory index (ARI) [1] and multi-modal pressure-

flow (MMPF) method [2]). Most of these methods are based

on signal processing techniques, which cannot examine the

individual physiological components of this system such as

the mechanical properties of the vessels, the cerebrospinal

fluid circulation and vasoreactivity. One way to examine

these components within the context of the whole system

is to use a mathematical model. This approach can be

used to determine several characteristic quantities, such as

vessel stiffness, cerebrospinal fluid (CSF) outflow, vascular

resistance, and the active time scales involved with CA. A

model could be used to assess regional vasoreactivity as

well. A recent review by David et al [3] discusses this

important topic, but to our knowledge, no existing patient
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specific models have attempted to assess changes in CA in

the different regions of the brain.

In this study we analyze a model proposed by Ursino and

Lodi [4]. In addition, we show how regional blood flow can

be predicted using a 1D fluid dynamic model. Both models

are open loop models that use blood pressure and BFV

measurements as inputs to predict cerebral BFV dynamics

during a postural change from sitting to standing. We show

how these models are validated against experimental data,

and we discuss how the two models can be coupled to assess

regional CA.

II. METHODS

This work aims at understanding CA during postural

change from sitting to standing. We will analyze two models

that relate transcranial Doppler BFV measurements from

the middle cerebral artery (MCA) and Finapres (Finapres,

Ohmeda Monitoring Systems, Englewood CO) measure-

ments of arterial blood pressure. The first is a compartmental

model that uses arterial blood pressure as an input to predict

changes in cerebrovascular tone and intracranial pressure

during a change in arterial pressure (such as during a postural

change from sitting to standing). The second is a 1D fluid

dynamic model which uses measurements of carotid and

basilar BFV to predict regional cerebrovascular resistance

and compliance at rest. For both models the output quantities

will be predicted using nonlinear optimization techniques

minimizing the sum of squared errors between computed and

measured values of cerebral BFV.

A. Cerebral autoregulation

1) Hemodynamic model: The Ursino and Lodi (U-L)

model can be formulated to use mean arterial blood pressure

as an input to predict mean cerebral BFV. This model lumps

all cerebral arteries into one unit and describes how cerebral

blood flow can be predicted, accounting for changes in

cerebral vascular tone and intercranial pressure. A diagram

of this model is shown in Figure II-A.1. This model uses an

electrical analogy, where cerebral BFV vc can be given by

vc =
q

Aa

=
pa − pc

RaAa

, (1)

where q is the cerebral blood flow rate to the MCA territory,

Aa is the cross-sectional area of the MCA, pa is the input

arterial pressure, pc is the arterial capillary pressure, and Ra

is the cerebrovascular resistance.

We apply volume balance at the level of the capillaries

where the venous pressure just distal to the cerebral capillar-

ies pv is equal to the intracranial pressure pic. Furthermore,

5470

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



pv

Rpv

pvs

qoq f

Cic

Ro

pic

Aapa

Ca

q

Ra

R f

pc

Fig. 1. Schematic of the hemodynamic model. Quantities on the model
are marked with three colors. yellow variables are found as solutions to
ODE’s, pink denote variables for which we have data, light blue are constant
parameters, and turquise quantities are auxiliary functions.

we assume that the volume of CSF flow out of the capillaries

is negligible compared to the blood volume. Therefore,

setting pv = pic the capillary pressure can be found as

pc =
paRpv + picRa

Rpv + Ra

, (2)

where Rpv is the constant venous resistance to flow.

The intracranial pressure pic is found as a solution to the

differential equation

d pic

dt
=

kE pic

1 +CakE pic

[

Ca

d pa

dt
+

dCa

dt
(pa − pic) (3)

+
pc − pic

R f

−
pic − pvs

R0

]

,

where kE , R f , R0, and pvs are constant parameters, arterial

pressure pa and d pa/dt are input from measurements, the

capillary pressure pc is given by (2), and vascular compliance

Ca is found from the solution of a ODE describing CA and

is discussed in the next section.

Finally, the resistance to flow, defined as Ra ≡ ∆p/q can

be derived from the Poiseuille’s equation and is given by

Ra =
kR

V 2
a

, where Va = Ca(pa − pic), (4)

where kR is a constant parameter and Va is the stressed

arterial volume.

2) Autoregulation model: Cerebral blood flow is regulated

by many factors. In this model we assume that cerebral blood

flow q, is maintained about a set point qn by regulating

cerebral vascular tone. We can thus view the deviation in

cerebral blood flow from this set point by the scaling ξ =
(q−qn)/qn.

The regulation of vascular tone is achieved by control of

Ca by the equation

dCa

dt
=

1

τ
(−Ca + σ) , (5)

where σ is the autoregulatory control function and τ is a

relaxation constant which determines the time scale of the

effects of σ .

The control function σ is a function of ξ , but is limited in

its capacity to act on the arterial vessels. For this CA system,

the control is modeled as

σ(Gξ ) =
(Ca,n + ∆Ca/2)+ (Ca,n−∆Ca/2)eGξ/kσ

1 + eGξ/kσ
, (6)

where ∆Ca is a function that describes the saturation limits

of σ , G is the autoregulatory gain, and kσ = ∆Ca/4. Finally,

Ca,n denotes the basal (or set-point) value for Ca.

In summary, the U-L model can be formulated as a system

of two ODE’s, (3) and (6), for which the state variables are

pic and Ca. Patient-specific simulation of CA dynamics was

achieved using continuous arterial pressure pa as well as

the change in arterial pressure with respect to time d pa/dt

as inputs to the model, with the model output vc computed

from pa, Ca, and pic as in (1).

B. Alternative CA Description

The CA model described above only permits first order

dynamics. It is well known that CA is complex, and it is

likely that the simplified model with only one time-scale

τ is not adequate for predicting observed cerebral BFV

responses. Furthermore, CA may display hysteresis, showing

more pronounced changes in cerebrovascular tone (faster and

with bigger amplitude) in response to a decrease in blood

pressure than during an increase in blood pressure.

Ursino and coworkers have developed a CA model with

multiple time-scales exploiting the segmented nature of the

the cerebral arteries [5], but to our knowledge nobody has

derived a CA model that can predict hysteresis effects. In

this study we show preliminary results using an open loop

control model that predicts cerebrovascular tone (compliance

and resistance). Similar to previous work [7] we describe the

open loop control by defining cerebral compliance Ca using

a piecewise linear function of the form

Ca(t) =
n+1

∑
i=1

γiHi(t) (7)

where Hi(t) are n hat functions defined by

Hi(t) =















t−ti−1

ti−ti−1
, ti−1 ≤ t ≤ ti

ti+1−t

ti+1−ti
, ti ≤ t ≤ ti+1

0, otherwise

(8)

The coefficients γi of this function may be estimated along

with the model parameters and the time-course of Ca vari-

ations are used to predict changes in cerebrovascular resis-

tance through the functional relation given in equation (4).

C. Regional Cerebral Blood Flow

To obtain information about regional cerebral blood flow

velocity, it is necesary to present major vessels in the

cerebral vasculature. This can be done using a 1D fluid

dynamic model using vessel geometries obtained from MRA

measurements of the radii and length of the vessels of the

circle of Willis (coW). This model is described in detail in

[6]. Regional blood flow velocity is then predicted by solving
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Fig. 2. 1D model of the coW including inflow vessels (the carotid CA and
basilar BA arteries as well as the anterior (ACA), middle (MCA), posterior
(PCA), communicating (coA). Inflow to the model is denoted by a wave
and outflows are marked with a Windkessel element.

the 1D Navier Stokes equations for each vessel of the coW.

The vessels included in this model are shown in Fig. 2. For

each vessel, flow q(x,t), pressure p(x,t), and vessel area

A(x,t) are computed as solutions to the following 1D Navier

Stokes equations,

∂A

∂ t
+

∂q

∂x
= 0 (9)

∂q

∂ t
+

1

2

∂

∂x

(

q2

A

)

+
A

ρ

∂ p

∂x
=

4µq

A
, (10)

where µ is the viscosity of blood (constant) and ρ is the

blood density. This model is obtained assuming a parabolic

velocity profile across the vessel wall. The first equation

ensures conservation of mass and the second conservation

of momentum. These equations are combined with a Kelvin

viscoelastic model that relates vessel area and arterial pres-

sure as

p− p0 + τσ
∂ p

∂ t
=

Eh

r0

(

s+ τε
∂ s

∂ t

)

, s(t) = 1−

√

A

A0

.

In this equation E is Young’s modulus, h is the wall thick-

ness, and r0 is the radius at p = p0.

At the internal boundaries (i.e., at the junctions between

vessels) we applied two conditions. For a junction with NJ

vessels, we assume that flow is conserved, ∑
NJ

i=1 qi = 0, where

flow into the junction is considered positive, and flow out is

considered negative. We also assume that the pressure of

each vessel at the junction is equal, p1 = p2 = · · · = pNJ
.

The external boundary condition for each of the outflow

vessels is described by the three-element windkessel model

Rs +
∂q

∂ t
+

Rs + Rp

RpC
q =

∂ p

∂ t
+

1

RpC
p (11)

where q(Li,t) is flow and p(Li,t) is pressure at the boundary

of vessel i having length L, C is the vessel compliance, and

Rs and Rp are resistances to flow. At the inflow vessels, we

prescribe time varying BFV obtained from measurements of

the internal carotid arteries and the basilar artery.

D. Patient-Specific Parameter Identification

1) Autoregulation Model: Nominal values for the param-

eters of the U-L model were determined from literature, by

estimation from data, and functional relations, assuming that

the system is at steady state. To determine if the model

could predict the observed data, we used sensitivity analysis

and subset selection as described in [8] to identify a set of

parameters that can be reliably estimated given blood flow

velocity data. We then estimated these parameters using the

Levenberg-Marquart method [9] minimizing the least squares

error between computed and measured values for cerebral

BFV, i.e., we minimized the cost

J =
N

∑
i=1

|vc
c(ti)− vm

c (ti)|
2,

where superscript c denotes computed values, and superscript

m denotes measured values. All quantities are evaluated at

times ti where measurements were taken.

To validate the 1D model of the coW, we used ensemble

Kalman filtering to estimate all resistors and capacitors for

all outflows. We used an ensemble size of n = 100 to estimate

all 12 parameters over an 8 second period.

2) Distributed Model: In order to accurately determine

the parameters of the windkessel boundary conditions of

the fluid dynamic model, an initial guess for the outflow

resistances can be made by approximating the coW in 0D.

By electrical analogy, the resistance to flow of each vessel

(given in Fig. 2) can be approximated by Ohm’s law, and the

resistances can be determined using the vessel geometries

and the Poiseuille equation. Applying a flow conservation

law at each of the nodes in Fig. 2, and setting the flow

at each of the boundaries to volumetric flow measurements

from arterial spin labeled MRI, we can derive a system of

linear algebraic equations for which we can find a unique

solution, which includes the total outflow resistance Ri,Tot of

each of the i outflow vessels of the arterial network. However,

there are two resistors at each boundary.

As suggested in [10] and [11], in order to minimize non-

physiological reflected waves, the first of these resistors,

Rp should be equal to the characteristic impedance of the

corresponding outflow vessel. This is given by

R
p
i = Z0 = ρc0/A0, (12)

where R
p
i is the first boundary condition resistance of the ith

outflow vessel, ρ is the density of blood, c0 is the Moens-

Korteweg characteristic wave speed of the vessel, calculated

c0 =
√

Eh
2ρr0

, and A0 and r0 are the characteristic area and

radius of the vessel, respectively. Since the resistors are in

series, the combined resistance is given by the sum of the

resistances. Therefore, if we know the total resistance Ri,Tot

for the ith outflow vessel, we may calculate the value of the

second resistor Rs
i by taking

Rs
i = Ri,Tot −R

p
i (13)

for vessel i.
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III. RESULTS

Results of simulations are shown in Fig. 3. We can see that

the U-L CA model can predict BFV changes during standing,

but not the BFV level before and after standing. It was,

however, able to predict BFV accurately during the standing

phase (compare red and turqouise traces on Fig.3 bottom left

graph). Note how cerebral vascular tone (top right) predicted

with U-L model shows approximately the same dynamics

during the activation phase, while the baseline value is too

low before the sit-to-stand and too high after the sit-to-stand

when compared to using the modified U-L (MU-L) model

using (7).

The results of the 1D model (shown for the right MCA in

the bottom right panel of Fig.3) showed that during steady

state (sitting) the 1D model was able to predict observed

MCA BFV dynamics. In particular, note that the 1D model

is able to predict the BFV waveform.
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Fig. 3. A representative comparison of models to data from a healthy young
subject. The top left panel shows input pressure for the CA model, which
dips at the point when the patient stands. The top right panel shows the
resulting cerebrovascular tone computed with the autoregulation (turqoise)
and piecewise (blue) linear models., and the bottom row shows the fit
to MCA BFV with the autoregulation model (left) and the 1D model
(right). The 1D model is able to reproduce the BFV waveform while the
autoregulation model is able to reproduce the observed BFV dynamics in
response to a postural transition.

The results shown above are from a representative subject.

We have analyzed MCA BFV using the U-L CA model for

16 heatlhy young subjects, and for 9/16 subjects the U-L

model by itself was able to predict observed dynamics.

IV. DISCUSSION

In this paper we have shown that we can predict beat-

to-beat regional blood flow of a subject at rest. We have

further shown that the U-L model can predict BFV dynamics

during standing for some subjects, but for some subjects the

CA model fails to predict the level of Ca before and after

standing. Rather than describing Ca as in (5), we propose to

model CA as an arbitrary open-loop control implemented by

predicting Ca using a piecewise linear function. This allows

us to examine a realistic time course for Ca without the

constraints of (5) and may permit us to determine a more

appropriate control function. Results ofthe 1D model show

that the model can predict regional BFV, but much work is

needed to couple this model with the CA model.

In future work we propose to use the CA model to predict

regional regulation of cerebral blood flow, one way to do so

would be to use measured blood pressure as an input to the

1D fluid model and regulate the resistors and capacitors in

the windkessel models using the U-L model with piecewise

linear control. Finally, the 1D model should be modified to

account for changes in intracranial pressure.
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