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Abstract

As part of the PhysioNet/Computing in Cardiology
Challenge 2021, a deep neural network for classifying car-
diac abnormalities from Electrocardiograms (ECG) was
developed. The deep neural network consists of three
parts. First, a convolutional neural network structure for
extending the feature space. Second, a parallel Long-short
term memory (LSTM) and linear network structure for fea-
ture extraction, and third, a linear layer with Sigmoid ac-
tivation for multi-label classification. For training, a cus-
tom loss function was used which can be assumed to be a
weighted, generalised Softmax function with quadratic dif-
ferences. The network labels 6 random segments of 8 sec-
onds of the lead I and II of the ECG recordings and then
combines the labels according to a simple rule. For hyper-
parameter tuning, an 80/20 split (training data/ test data)
was used. The network performance was finally tested us-
ing a 5-fold cross-validation on the open training data set
and validated and tested on the Challenge System (team =
AADAConglomerate). The network scored 0.25±0.089 on
the training set for all leads. A validation score of 0.32 was
achieved on the Challenge system during the official phase
for each lead version. On the challenge’s hidden test set,
test scores of 0.23, 0.23, 0.23, 0.23, 0.23 were achieved
(ranked 31th, 30th, 31th, 30th, 28th out of 39 teams) for
12 leads, 6 leads, 4 leads, 3 lead and 2 lead respectively.

1. Introduction

Cardiovascular diseases are some of the most prominent
causes for death [1]. Therefore, an early diagnosis is cru-
cial for achieving timely treatment. Usually, a twelve-lead
ECG recording is used for diagnosis. However, the elec-
trode placement as well as diagnosis is a cumbersome and
error-prone process [2]. Algorithms for automated detec-
tion as well as the use of ECG recordings with less than 12
leads could highly simplify the process while increasing
the accuracy of the diagnosis.

The aim of the Computing in Cardiology Challenge
2021 [3, 4] was to correctly classify twelve-lead, six-lead,
four-lead, three-lead and two-lead ECG recordings regard-
ing 26 diagnoses. Similar to last year’s challenge, no lim-
itation with respect to the classification algorithm were
made. In last year’s challenge [5], where the objective was
to correctly classify twelve-lead ECG recordings, a promi-
nent number of high-ranking algorithms used deep neu-
ral networks [6–8]. Therefore, a deep neural network for
multi-label classification was developed. In the following
sections, the methodology and results are presented. First,
the preprocessing of the ECG recordings is described fol-
lowed by the deep neural network structure. Third, hyper-
parameter tuning and network training are demonstrated,
and finally, the results are presented and discussed.

2. Method and Materials

During the course of the Challenge, the neural network
structure as well as the training procedure was altered sev-
eral times. For the unofficial phase, a simple multi-layer
perceptron with three linear layers and Sigmoid activations
was trained by hand-crafted features. Formerly, an auto-
encoder was to be used for the creation of additional fea-
tures, but this idea was abandoned and only an extended
encoder was used for both feature extraction and classifi-
cation. The latter is described in the following.

2.1. Preprocessing

For robustness, the beginning and end of each record-
ing were discarded since they often exhibited artifacts (100
samples). Then, the raw signal was filtered by a fifth or-
der butterworth high-pass filter with cut-off frequency at
0.5 Hz followed by a 50 Hz notch filter to further suppress
power line noise [9]. After resampling the signal to 250
Hz, the signal was normalised and noisy parts were clipped
if the absolute value of the signal amplitude exceeded a
threshold, i.e. the amplitude was set to zero. Finally, n ran-
dom segments of t seconds were selected and forwarded to
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Figure 1. Toolchain of preprocessing. In the ’clipping’ block the removal of artifacts at the beginning and end and by the
threshold are summarised.

the neural network. Only Einthoven lead I and lead II were
used. The preprocessing toolchain is depicted in Fig. 1.

2.2. Deep neural network architecture

The deep neural network consists of three parts (see
Fig. 2). First, a convolutional neural network, second a
parallel structure of a Long-short term memory (LSTM)
network and a linear network, and third, a linear layer with
Sigmoid activation for multi-label classification. The first
part of the network is used for extending the feature space.
The convolutional network’s key element is the combina-
tion of max pooling, convolutional layer (conv), rectified
linear unit (ReLU) and batch normalisation which increase
the feature space while binning features using max pool-
ing. Each convolution layer increases the dimensional-
ity by two, except the last which reduces it by two, such
that it is first increased up to 256 and finally decreased to
128. The kernel size for all convolutional layers is five and
a zero-padding of two is applied. The stride is selected
as two for all convolutional layers except the second and
second last layers where it is one. The max pooling lay-
ers have a kernel size of three, a stride of two, and zero-
padding of one is applied. The input size is a segment
of around 8 seconds (2048 samples at 250 Hz) of lead I
and II in one vector (2048x2). Over-fitting is prevented
by dropout layers and max pooling. The second part of
the network is for decreasing the feature space and con-
struct features which are evolving over time (LSTM) and
rigid features (Linear network). Also, information from
both leads are combined. Finally, the third part of the net-
work is for classification. The network classifies n random
segments. Each output which can be assumed to be a prob-
ability for the class is transformed to a label by rounding,
thus generating n times 26 labels. The labels are then com-
bined by taking the maximum over all segments except for
the normal class (sinus rhythm). For the normal class, the
minimum operator is applied preventing the network from
being influenced by the imbalanced dataset and to prevent
illogical classifications.

2.3. Hyperparameter tuning and training

A crucial part for multi-label classification is the loss
function which is usually chosen to be the binary cross-
entropy with a Sigmoid activation [10]. Since the loss
function has an important influence on the training, a
custom loss-function was used. The loss-function can
be assumed to be a weighted, generalised Softmax with
quadratic differences given by

loss =
1

n

n∑
j=1

[W(y −
ỹ ·

∑
i yi∑

i ỹi
)2] (1)

Here, y is the vector containing the reference labels while
ỹ is the vector of predicted labels for n segments. The
weighting gives more emphasis to the sinus rhythm to bal-
ance the data. For optimisation, the ADAM optimiser
is used. Additionally, a learning rate scheduling is used
which decreases the learning rate after 20 epochs by 75%.
For hyperparameter tuning, the whole dataset provided by
the Challenge [11–16] is split such that 80% is used for
training and 20% for testing. After hyperparameter tun-
ing the network is validated by a 5-fold cross-validation
(random samples from whole training data set). The final
hyperparameter values can be found in Tab. 1.

Table 1. Values of the hyperparameter after tuning.
Hyperparameter Value
Learning rate 1.5 · 10−5

Batch size 128
Dropout probability 0.1
Epochs 40
Number segments n 6

3. Results

The achieved scores for the official phase are shown
in Tab. 2. This includes mean and standard deviation
of 5-fold cross-validation (scores per fold 0.183, 0.223,
0.206, 0.246, 0.223) and parameter tuning (score 0.428)
as well as the scores achieved on the Challenge System.
In Fig. 4 and Fig. 3 the confusion matrix for one fold
of the 5-fold cross-validation (fold 4) and the 80/20 split
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Figure 2. Architecture of the deep neural network. The red underlined layers are the key elements of the convolutional
neural network.

are depicted. It can be seen that the neural network over-
fits especially to sinus bradycardia (SB). Additionally, the
random dataset for 5-fold cross-validation is rather imbal-
anced since some classes do not occur at all. From the
confusion matrix of the 80/20 split, it can further be con-
cluded that similar pathologies are confused more often,
such as atrial flutter (AFL) and atrial fibrillation (AF) or
bundle branch block (BBB) and complete left/right bundle
branch block (CLBBB and CRBBB). It can also be seen
that waveform-related pathologies are detected with less
accuracy (< 10%), such as low QRS voltages. Finally,
pathologies with respect to the rhythmic changes such as
sinus tachycardia (STach) are detected with rather high ac-
curacies (> 80%). The AUROC value for the 5-fold cross-
validation was only around 0.5 while it was at approxi-
mately 0.856 for the 80/20 split.

Table 2. Challenge scores for training set (mean+standard
deviation of 80/20 split and 5-fold cross-validation), val-
idation set on Challenge System and hidden test set on
Challenge System.

Leads Training Validation Test Ranking
12 0.25± 0.089 0.32 0.23 31
6 0.25± 0.089 0.32 0.23 30
4 0.25± 0.089 0.32 0.23 31
3 0.25± 0.089 0.32 0.23 30
2 0.25± 0.089 0.32 0.23 28

Figure 3. Confusion matrix of the 80/20 split. The colour
map was enhanced by taking the rounded logarithm of con-
fusion matrix plus 1, e.g. 6 corresponds to approximately
312. Information about the classes can be found in [3].

4. Discussion

The overall performance of the neural network must be
improved to be accurate enough for clinical application.
The performance especially for waveform-related patholo-
gies could be improved by using additional hand-crafted
features on the raw ECG data since information about the
voltages is lost through normalisation. From the training
and validation scores, it can be seen that over-fitting oc-
curred while tuning the hyperparameters since the valida-
tion scores are smaller than the training score. Therefore,
dropout layers as well as fewer stages of convolutional lay-
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Figure 4. Confusion matrix of the third fold. Information
about the classes can be found in [3].

ers could be helpful. Since only two leads of the ECG
recordings were fed into the neural network, it would also
be conceivable to use more leads. However, the discus-
sions after the challenge [3] showed that the number of
leads does not necessarily have a high influence on the
classification results.

5. Conclusion

For the Computing in Cardiology Challenge 2021, a
deep neural network for classifying ECG recordings with
two, three, four, six and twelve leads was developed and
tested. The network achieved scores of 0.428 (training data
set), 0.32 (validation set on Challenge System) and 0.23
(test set on Challenge system). Improvements are neces-
sary for usage in a clinical environment.
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