Classification of ECG Signals with Different Lead Systems Using AutoML
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Abstract

The PhysioNet 2021 challenge asks participants to de-
velop automated techniques for classifying cardiac abnor-
malities (CA) from both 12-lead electrocardiogram (ECG)
and reduced-lead settings. We investigated on the feasi-
bility of applying Automated Machine Learning (AutoML)
approaches to build ECG classifiers. Standard ECG pre-
processing was applied to the ECG (filtering and resam-
pling). Three different AutoML frameworks were executed
on the 88,000+ ECGs made available by the challenge or-
ganizers. The optimal ML pipeline was found by the Au-
toML frameworks. We finally assessed the frameworks’
classification performance, the effect of the number of em-
ployed leads, and the effect of extending the frameworks
training time. The classifiers of our team “BiSP_Lab” re-
ceived scores of 0.30, 0.29, 0.28, 0.26, 0.23 (ranked 27th,
29th, 28th, 29th, 28th out of 39 teams) for the 12-lead,
6-lead, 4-lead, 3-lead, and 2-lead versions of the hidden
test set with the Challenge evaluation metric. The Au-
toML frameworks showed comparable performance. Sig-
nificantly extending the training time seemed to not im-
prove the test score. AutoML showed promising perfor-
mance on the test set, suggesting their potential for classifi-
cation of CA. Future works are towards testing further Au-
toML approaches, and better determining the impact of the
available training time on the classification performance.

1. Introduction

The 12-lead electrocardiogram (ECG) is a fundamental
clinical tool for diagnosing several cardiac abnormalities
(CA) [1]. The automatic interpretation and correct diagno-
sis of CA largely increases the odds that their treatments
become successful [2]. However, most of the available al-
gorithms which interpret ECGs provide the diagnosis of a
relatively small amount of CA. Thus, to cover up for their
actual huge amount, several algorithms need to be imple-
mented with the hassle of merging their predictions [2].

Similar issues yet occurred in Computer Vision, where
designing algorithms to classify hundreds of classes be-
came unfeasible. Further, in case the formulation of the un-
derlying problem would change, e.g. by considering a new
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class, all such algorithms would need a time-consuming
phase of re-train. Within this context, Machine Learning
(ML) algorithms and Deep Neural Networks (DNN) have
been introduced to interpret ECGs. DNN tackle the prob-
lem by defining a mathematical model flexible to changes
and easier to update when new classes become available.

The Computing in Cardiology 2021 challenge [3] ex-
tended the previous year’s challenge [4] by asking partic-
ipants to develop automated techniques for detecting and
classifying CA from both 12-lead ECG recordings and
reduced-lead ECG recordings by means of automatic al-
gorithms. The challenge organizers provided a dataset
containing 88,000+ recordings of clinical ECGs, collected
from multiple sources, along with their diagnosis.

Despite the promising results of ML, the proper param-
eters and hyperparameters must be carefully selected to let
ML algorithms perform at their best. In the case of DNN,
the architectures are time-consuming to design, thus of-
ten borrowed from other domains. They usually need a
huge amount of data for training, while being susceptible
to class imbalance. To address such drawbacks, we in-
vestigated on Automated Machine Learning (AutoML) ap-
proaches to automatically find the optimal parameters and
hyperparameters for ML algorithms, and architectures for
DNN models, to distinguish CA from ECGs.

2. Materials and Methods

2.1. Dataset

The dataset made available for the challenge was com-
posed of 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead ECGs
in WFDB format, labeled with one or more CA, among
133 possible ones [3,4]. The dataset was obtained merging
data from seven institutions in four countries across three
continents. The ECG recordings lasted from 6 seconds to
30 minutes and sampling rates ranged from 257 Hz to 1000
Hz, where the majority was sampled at 500 Hz. A total
number of 88,253 ECG signals was available. The perfor-
mance of the submitted classifiers were assessed using an
expert-based scoring metric provided by the challenge or-
ganizers which assessed the classifiers’ performance only
relying on a subset of 27 selected CA [4]. A hidden val-
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idation and test set, respectively composed of 6,630 and
36,272 recordings, handled by the challenge organizers,
were used for evaluating the proposed algorithms. A max-
imum of 72h was allowed for training time and 24h for
testing.

2.2.  Preprocessing

We only relied on the dataset provided for the challenge,
and on signals labeled with the CA considered in the chal-
lenge scoring metric defined by the organizers. Standard
ECG preprocessing was applied beforehand to raw ECGs,
including filtering and resampling. ECGs were downsam-
pled or upsampled to 125 Hz according to their actual sam-
pling rate and filtered with a bandpass Butterworth filter
(3" order, zero phase, and pass-band: 0.67 — 30 Hz) to re-
duce powerline interference, baseline wandering and high
frequency noise. For each lead system, only the first 10
seconds of ECG were considered. In case the length was
inferior to 10 seconds, zero padding was performed. The
available ECGs were randomly split into training and val-
idation sets with 70/30 ratio for each lead system, with
stratification (i.e., the class distribution of the training set
matched the one of the validation set).

2.3. The AutoML Frameworks

We adopted three different AutoML frameworks to build
the required ECG classifiers, i.e. auto-sklearn, AutoKeras,
and the Tree-Based Pipeline Optimization Tool (TPOT).
The AutoML frameworks are capable of automatically se-
lecting the optimal preprocessing steps, which include data
preprocessing and feature preprocessing, and ML algo-
rithm, along with its trainable parameters and hyperparam-
eters, for the problem and dataset at hand [5].

The auto-sklearn framework is an AutoML system
based on the Python scikit-learn library [6]. It relies
on 15 ML classifiers, 4 data preprocessing methods, and
14 feature preprocessing methods, giving rise to a high-
dimensional hypothesis space. Onto such space, auto-
sklearn defines a Combined Algorithm Selection and Hy-
perparameter optimization (CASH) problem and it relies
on Bayesian Optimization to discover a top-performing
ML pipeline. With the term “pipeline”, we hereinafter re-
fer to the preprocessing (data and feature preprocessing)
and adopted ML/DNN classifier, along with its parameters
and hyperparameters, to solve the problem at hand.

The AutoKeras framework is an AutoML tool specific
for DNN, based on the Python Keras library [7]. It exploits
the concept of network morphism, which retains the func-
tionality of a DNN while changing its underlying architec-
ture. Bayesian optimization is leveraged by AutoKeras to
guide the network morphism in searching of the optimal
DNN architecture for the considered problem and dataset.

To efficiently explore the search space, the authors of the
AutoKeras framework developed a custom neural network
kernel along with a tree-structured optimization algorithm.
The TPOT framework automatically constructs and op-
timizes ML pipelines relying on the well-known evolution-
ary computation technique of genetic programming (GP)
[8]. At the beginning of every TPOT run, a fixed num-
ber of pipelines is generated to constitute what is usually
called in GP as population. GP is used to evolve the set of
pipelines that acted on the dataset, and a portion of those is
retained relying on their classification performance. The
top-performing pipeline is retained when TPOT reaches
convergence or after a user-defined number of runs.

2.4. Experiments on AutoML Frameworks

The AutoML frameworks were trained on the available
dataset with the aim of 1) comparing the performance
among the three considered frameworks; 2) assessing the
effect of the number of employed leads on the final classi-
fication performance; 3) assessing the effect of extending
the training time at disposal of the AutoML frameworks.

The input features were set as the reduced 10 seconds
ECGs for each lead system, and the respective validation
sets were employed by the frameworks to select the op-
timal ML pipeline. By default, AutoML frameworks use
the validation loss of the employed ML/DNN algorithm as
a score for selecting the best pipeline. For each AutoML
framework, we set the challenge score defined by organiz-
ers as scoring function to measure the performance of the
created pipelines. Each AutoML instance which follows
comes with a parenthesized name to easily refer to it.

Auto-sklearn was tested by setting 2.5h of training time
for each lead system (auto-sklearn #1), and setting a pro-
portional training time to the number of leads of (2.5h x
#leads) for each lead configuration (auto-sklearn #2). The
whole set of classifiers, feature preprocessing methods,
and data preprocessing methods was considered.

AutoKeras was tested relying on a training time of
(2.5h x #leads) for each lead configuration and using
the full set of pipeline elements at disposal (AutoKeras
#1). Next, the hypothesis space was reduced to consider
only DNN composed of Convolutional, Dense, ResNet,
and Xception layers, and by mantaining the same training
time of the previous configuration (AutoKeras #2).

TPOT was tested under two configurations with a train-
ing time of (2.5h x #leads). The TPOT Default config-
uration was used to search over a broad range of pipeline
elements, where some of them may take a long time to run,
especially on large datasets (TPOT #1). Then, the TPOT
Light configuration was tested, in which TPOT searched
over a restricted range of simple and fast-running pipeline
element to find quick and simple ML pipelines (TPOT #2).
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Figure 1: (a) The cumulative sum of challenge scores of AutoML instances on each lead system. (b) The box-plots of the
challenge scores computed over each lead system. (c) The cumulative sum of challenge scores obtained over each lead
system by the AutoML instances. (d) The box-plots of challenge scores computed over each AutoML instance. Scores

were computed on the hidden validation set.

To assess the effect of extending the training time at dis-
posal of the AutoML frameworks, as a final test we consid-
ered only the 3-lead system and we trained each AutoML
framework for 70h onto such system (while we used pre-
trained ML models for the remaining lead systems in the
instance submission phase). For each AutoML system, the
settings of the top performance instance were selected.

Leads | Validation | Test | Ranking
12 0.35 | 0.30 27th

6 0.34 | 0.29 29th

4 0.30 | 0.28 28th

3 032 | 0.26 29th

2 0.31 | 0.23 28th

Table 1: Challenge scores for our final selected entry (auto-
sklearn #2) on the hidden validation and test set, as well as
the ranking on the hidden test set.

3. Results

To compare the performance among the considered Au-
toML frameworks, we computed in the Figure 1a the cu-
mulative sum of challenge scores obtained by the AutoML
instances on each lead configuration, on the hidden vali-
dation set. The sub-bars report the score obtained by an
AutoML instance on a specific lead system. To assess the
overall variability of all the AutoML instances over lead
systems, we reported in the Figure 1b the box-plots of chal-
lenge scores computed over each lead system on the hidden
validation set.

To quantify the effect of the number of employed leads
on the final classification performance, similarly to Figure
la, we computed in the Figure 1c the cumulative sum of
the challenge scores obtained over each lead system by the
AutoML instances. For each lead system, the sub-bars re-
port the score obtained by an AutoML instance. To assess
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the variability of a specific AutoML instance over lead sys-
tems, we reported in the Figure 1d the box-plots of chal-
lenge scores computed over each lead system.

After training auto-sklearn #2, AutoKeras #1, and TPOT
#2 for 70h relying onto the 3-lead ECGs, we respectively
obtained 0.32, 0.33, and 0.35 challenge scores.

Table 1 reports the challenge score on the hidden val-
idation and test set, achieved by the final selected entry
(auto-sklearn #2).

4. Discussion

As shown in the Figure la, TPOT #2 was the best
among the six instances in terms of cumulated score, and
it reached the highest score values in three out of five lead
systems (up to 0.35 with 4-leads). The worst performance
were provided by TPOT #1, since it reached the lowest
challenge score values in four out of five lead systems. The
Figure 1d shows that TPOT #2 and TPOT #1 were the ones
with the highest and lowest median challenge score value
computed across lead systems, respectively of 0.34 and
0.21. The instance TPOT #2 showed the lowest interquar-
tile range (IQR) of 0.01, while the highest IQR of 0.14 was
reached by TPOT #1. The highest IQR obtained by TPOT
#1, associated with the lowest median score value, sug-
gests that in this case the used AutoML configuration may
be weak in classifying CA, since it searched into a limited
hypothesis space.

The Figure 1c¢ shows that the 12-lead configuration is the
one where instances obtained the lowest performance. On
the other hand, the 6-lead system showed the highest cu-
mulated score. The Figure 1b shows that the 6-lead and the
12-lead systems were the ones that showed respectively the
highest and lowest median score value computed across
AutoML instances, respectively of 0.33 and 0.20. The 6-
lead system obtained the lowest IQR of 0.04, while the
highest IQR of 0.24 was obtained by the 12-lead system.
The results on the 3-lead are comparable the to 6-lead sys-
tem, as it is reasonable to expect since the second system is
a linear combination of former. The highest IQR obtained
by the 12-lead system, associated with the lowest median
score value, suggests that in this case AutoML frameworks
might need further training time to match the performance
obtained in the case of less numerous lead systems.

The experimented AutoML frameworks obtained inter-
mediate classification performance with respect to other
teams. The classifiers of our team “BiSP_Lab” received
scores of 0.30, 0.29, 0.28, 0.26, 0.23 (ranked 27th, 29th,
28th, 29th, 28th out of 39 teams) for the 12-lead, 6-lead,
4-lead, 3-lead, and 2-lead versions of the hidden test set
with the Challenge evaluation metric. Since the class dis-
tribution of the available dataset was not balanced, a cost-
sensitive learning approach was leveraged to face the class
imbalance problem: we executed the AutoML frameworks

to find optimal pipelines relying on the challenge score
function, instead of the standard loss functions of the em-
ployed ML/DL algorithms. The misclassification costs de-
fined for CA by expert physicians helped in learning the
few represented class, by considering their misclassifica-
tion cost within the knowledge domain.

Further aspects of AutoML frameworks may be ex-
plored in the future. A wide number of AutoML tools is
arising in the recent literature and more AutoML frame-
works may be tested to address ECG classification, even
if recent works suggest that their performance is relatively
similar [5]. Next, even if the impact of increasing the train-
ing time did not significantly improve the performance in
the case of the 3-lead system (not more than 0.03 of the
challenge score), a systematic assessment of performance
against training time may be investigated even for other
lead configurations. However, the missed improvement in
performance may be in line with results of recent works,
which showed that most of AutoML frameworks tend to
converge to similar performance [5].
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