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Abstract 

The automatic detection and classification of cardiac 
abnormalities can assist physicians in making diagnoses, 
saving costs in modern healthcare systems. In this study we 
present an automatic algorithm for classification of 
cardiac abnormalities included in the CinC’s challenge 
2021 dataset consisting of twelve-lead, six-lead, three-
lead, and two-lead ECGs (team: Polimi_1). For each set 
of leads an ensemble of three deep learning models, 
trained on three different subsets, was developed. These 
subsets, obtained by splitting the recordings with the most 
frequent classes, had more balanced distributions for 
training and were used to train the 3 classifiers. The 
trained models were modified Residual Networks with a 
Squeeze-and-Excitation module. This module is based on 
the intuition of channel attention: the basic idea of this 
approach is to apply a weight to the Convolutional 
channels based on their relevance in learning before 
propagating to the next layer. For evaluation, we 
submitted our model to the official phase of the 
PhysioNet/Computing in Cardiology Challenge 2021. The 
model received scores of 0.47, 0.46, 0.45, 0.48 and 0.45 
(ranked 14th, 13th, 15th, 10th, and 13th out of 39 teams) on 
12-lead, 6-lead, 4-lead, 3-lead, 2-lead hidden test set, 
respectively; placing us in the 11th position for the mean of 
the 12-lead, 3-lead, and 2-lead scores. 
 
1. Introduction 

Cardiovascular disease is the leading cause of death 
worldwide and the electrocardiogram (ECG) is a major 
tool in their diagnoses [1]. Early treatment can prevent 
serious cardiac events and the ECG can play an important 
role in screening [2]. In particular the 12-lead ECG is used 
as the primary clinical tool to diagnose changes in heart 
conditions. Deep neural networks (DNNs) have recently 
achieved great success especially in tasks such as image 
classification [3] and speech recognition [4], and there are 
great expectations in their application in health care and 
clinical practice. Recent studies [5] showed their 
applicability with ECG recordings and in particular of one 
class of DNNs: Convolutional Neural Networks (CNNs). 
These are networks that aim at learning a compressed 

representation (encoding) of an input dataset with an 
approach similar to the biological sensorial processing of 
the visual cortex whose cells are sensitive to small sub 
regions of the visual field called receptive fields. However, 
it is still an open question if DNNs would be useful in a 
more complex setting with an inhomogeneous dataset, 
including many different rhythms to be classified [6]. 
Furthermore, there is no evidence that a reduced subset of 
leads could obtain similar performances to the twelve leads 
configuration. Indeed, it is important to define which 
reduced subset can capture the wider range of diagnosis. 

The aim of this work is the development of five different 
end-to-end DNNs respectively from twelve-lead, six-lead, 
four-lead, three-lead, and two lead ECG recordings. These 
models identify 30 different diagnoses directly from raw 
ECG signals using the annotated datasets available for the 
2021 Computing in Cardiology Challenge [7] (team name: 
Polimi_1). 

2. Materials and Methods 

2.1. Data 

The available data consisted of 88,253 recordings from 
six different databases. Each ECG recording was acquired 
in a hospital clinical setting, but the sample frequency 
varies between the different dataset with values from 257 
Hz to 1 kHz. Every ECG recording is accompanied with 
demographic information like age and sex and also the 
diagnoses. Each recording could have more than one 
diagnosis, in fact it was a multi label challenge. The 
organizers of the Challenge claimed that the quality of the 
label depended on the clinical or research practices and that 
they were generated by machine, over read by a single 
cardiologist, and finally determined by multiple 
cardiologists. 

Regarding the labels, the training data contained 133 
diagnoses, but the challenge consisted in evaluating 30 of 
them with the following different lead combinations: 

 12: I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, 
V6; 

 6: I, II, III, aVR, aVL, aVF; 
 4: I, II, III, V2; 
 3: I, II, V2; 
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 2: I, II. 
 
2.2. Challenge Score 

In this challenge the evaluation metric is a generalized 
accuracy called “challenge score”. This scoring metric is 
new and was developed by the organizers of the challenge 
[6]. This new metric awards partial credit to misdiagnoses 
of predictions that result in similar outcomes or treatment 
as the true actual diagnosis. This approach is important 
because it reflects the clinical reality in which some errors 
are more harmful than others. Also, this metric does not 
penalize too much misdiagnosis between classes that have 
similar responses.  

 
2.3. Pre-Processing 

All the recordings were resampled to minimum 
frequency of 257 Hz. To allow a fixed input size in the 
model each ECG was set to be 4096 points (approximately 
16 seconds). This was done by truncating the part 
exceeding 4096 samples for longer signals and zero 
padding the shorter signals. 

Since the dataset was unbalanced (Figure 1) in respect 
of Normal Sinus Rhythm (NSR) and Sinus Bradycardia 
(SB) labels (in particular the NSR occurred three times 
more with respect to the other diagnosis), the recordings 
with these labels were split into three different subsets. 
Each of these subsets was stacked with all the recordings 
that were not labelled as NSR and SB. In this way a more 
balanced distribution for training was obtained, as 
presented in Figure 2. The frequencies of NSR and SB are 
highlighted in red. 
 

 
Figure 1 Training set diagnosis distribution 
 

 
Figure 2 New Training Set diagnosis distribution with 3 splits of 
NSR and SB labelled recording 

Since four pairs of classes were scored as if they were 
the same class by the weights of the challenge score these 
pairs were considered to be identical and simply combined. 
In this way the number of classes for the model were 
decreased to 26. Furthermore, every signal that did not 
have any positive scored labels after the removal of 
unscored labels was discarded. 

Finally, in some recordings, some leads were inverted 
or missing and for this reason, in order to have a better 
generalization capability, a data augmentation procedure 
was developed. In details, it consisted in random 
applications of this technique: summation of a gaussian 
noise in the signal of leads randomly selected; changing the 
position between two or more leads; flipping the signal of 
one, two or more leads. 

 
2.4. Model architecture 

The model used in this work is a modified ResNet [8] 
that receives an input of fixed length of 4096 samples along 
the channels according to the number of leads required. 
This model consists in one convolutional layer followed by 
N = 8 residual block each of which contain two 
convolutional layers and a squeeze and excitation block [9] 
(see Figure 3). This module is based on the intuition of 
channel attention: the idea of this approach is to apply a 
weight to the channels based on their importance before 
propagating to the next layer.  

 
Figure 3 The modified ResNet used in this work 
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In the first convolution layer and inside every two 
residual blocks a dilated convolution was performed. This 
operation was performed with a dilation rate that was 
doubled every time starting from the value of 4. Dilated 
convolutions, as shown in Figure 4, are used to increase the 
receptive field of the network, i.e., the region in the input 
space that a CNN feature is affected by. Indeed, a larger 
receptive field improves the capability of comprehensive 
consideration [10]. Due to technical issues this last 
implementation was not present in the submission. 

 

 
Figure 4 1D dilated convolution with a kernel size of 3 and 
dilation rates 1 and 4. The green block in the input signal (first 
row) indicates the unit of interest. In the output signals (second 
and third row) the green blocks show the receptive field for each 
different dilation rate. 

 The first convolutional layer and the two initial 
Residual blocks have 64 convolutional filters. The number 
of filters increases by a factor of two for every second 
Residual blocks. Also, in these blocks the feature 
dimension is halved after the max pooling. In every 
Residual block a dropout with factor of 0.5 is performed. 

 
2.5. Threshold optimization 

The prediction thresholds used by the network for 
assigning binary values for classification of every class 
were 0.5 as given by the sigmoid function. This choice of 
thresholds did not perform very well so they were 
optimized. The solution that gave the best results consisted 
in an optimization, which maximized the challenge metric, 
starting from different thresholds values found with a grid-
search in two separate steps. First a general value within 0 
and 1 with steps 0.1 score was fixed for all the classes 
which gave the best score. Then, by setting all the other 
values of other classes, the threshold for each class was 
progressively updated by searching separately for the value 
between 0 and 1 with step of 0.01 which maximized the 
score. 

Due to technical issues, a less complex optimization 
was implemented in the submission. This solution 
consisted only in optimizing the thresholds starting from 
the value found in a single step. The general starting point, 
indeed, was set as the value within 0 and 1 with steps of 
0.01 which, applied for every class, maximized the 
challenge metric. 

 
2.6. Ensemble 

Ensemble learning builds a set of diversified models and 
combines them. Theoretically and empirically, numerous 
studies [11] have demonstrated that ensemble learning 
usually yields higher accuracy than individual models; a 
collection of weak models (inducers) can be combined to 
produce a single strong ensemble model. In this work an 
ensemble was computed by the majority voting of three 
different models each of them trained on one of the three 
different subsets with a more balanced distribution. 

 
3. Results 

Due to technical issues the presented model could not 
have been submitted successfully, therefore a version 
without data augmentation, dilated convolution and with a 
more simpler threshold optimization was scored in the 
official phase. This solution obtained the challenge score 
in the hidden test set of 0.47, 0.46, 0.45, 0.48 and 0.45 on 
12-lead, 6-lead, 4-lead, 3-lead, 2-lead respectively as 
shown in Table 1. These results placed us in the 11th 
position for the “all-lead” score, which is computed as the 
mean of the 12-lead, 3-lead, and 2-lead scores. 

 
Leads  Validation Test Ranking 
12 0.593 0.47 14 
6 0.577 0.46 13 
4 0.591 0.45 15 
3 0.595 0.48 10 
2 0.582 0.45 13 

Table 1 Challenge scores for our final selected entry (team 
Polimi_1) on the hidden validation set, on the hidden test set 
and the ranking obtained in this last set. 

 In Table 2 the challenge scores on an offline validation 
set are presented; this set is made up of records belonging 
to the same datasets as those used for validation by the 
challenge organizers. It could be noted that the results 
obtained in this set by the submitted model are similar to 
the ones obtained in the official phase in the “validation 
set”. Therefore, the better results obtained by the final 
model could be considered consistent for comparison. This 
solution, indeed, improved all the scores for all the 
different lead combinations. 
 

Leads Submitted Model Final Model 
12 0.589 0.611 
6 0.580 0.600 
4 0.594 0.613 
3 0.587 0.617 
2 0.582 0.611 

Table 2 Challenge Score on the offline validation set. 
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4. Discussion and Conclusions 

The aim of this work was to develop an end-to-end 
model which uses raw ECG signals without filtering. In 
this way the capability of the model to handle noisy signals 
is addressed to demonstrate its applicability in realistic 
scenarios. For each of the five lead combinations an 
ensemble of three models trained on each subset were 
developed. This solution was implemented in order to 
address the great imbalance of classes presented in the 
dataset. Thanks to the ensemble, indeed, a more powerful 
model was obtained: this model had a better capability of 
generalization because it included the learning from all the 
three models. The imbalance of classes was also addressed 
with the optimization of the threshold for each class. This 
implementation was particularly important because the 
classes were not only unbalanced between each other, but 
it was far more common to have negative labels than 
positive ones. 

A limitation of this work was using only 4096 samples 
of the signal. This choice was made because it sufficiently 
covered the major part of the signals from the available 
dataset and in order to take the most advantage of parallel 
processing power of GPU and reduce a lot of training time. 
Such a procedure in fact was determined by the 
computational limitations due to the width of the dataset. 

The submitted model achieved the scores in the hidden 
test which are shown in Table 1. It is worth mentioning that 
this set was obtained combining four different hidden sets. 
The first two hidden test sets were from sources used also 
in the training set, and thus their scores were higher. On 
the contrary, the last two were from totally hidden 
undisclosed sets, and their scores were much lower 
suggesting that the model failed to migrate to a completely 
different data set effectively. 

However, the final model developed in this work could 
not have been submitted. This model showed great 
performances demonstrating room for improvement: 
indeed, it could be asserted that with this approach the 
results would have been overall improved also in the 
validation set of the challenge and hopefully also in the 
hidden test set. The offline validation set in which these 
results are obtained has recordings from the same datasets 
used as validation by the organizers and the results 
obtained by the same models are very similar. This could 
be observed confronting the score of the submission with 
the score illustrated in the “Submitted Model” column of 
Table 2. Since the results of the “Final Model” are higher 
in all the combinations, it could be inferred that techniques 
of data augmentation, grid-search threshold optimization 
and the use of a higher dilation rate showed promising 
performances in classifying a higher amount of diagnosis 
with different characteristics. 
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