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Abstract

Automatic identification of cardiac abnormalities
through the ECG with a reduced lead system (less than
the standard 12-lead) can provide a valuable easy to use
and lower cost diagnostic alternative to ordinary 12-lead
ECG devices. This study investigates the use of Convo-
lutional Recurrent Neural Networks (CRNNs) to identify
cardiac abnormalities in 12, 6, 4, 3 and 2 lead ECG data.
Multi-label classification with CRNNs relies on effective
data pre-processing, model architecture and hyperparam-
eter tuning. ECG signals were first pre-processed and then
zero-padded or clipped to have an equal duration of 10
seconds). Additionally, a wavelet-based ECG segmenta-
tion algorithm was used to extract the characteristics and
locations of the PORST complexes (features), and both
PORST fiducial points and extracted features were used
as inputs to two Convolutional Recurrent Neural Networks
(CRNN), respectively, each one consisting of eight layers.
The two CRNNs were subsequently concatenated. Final
challenge results of the proposed method achieved an offi-
cial score of —0.35 for the all-lead combination and a rank
of 36 (team name: heartMAASters). In the discussion we
provide some theoretical considerations on why we would
expect the enhanced model to show a better performance.

1. Introduction

Wearable ECG devices are becoming increasingly rele-
vant as a research and clinical tool for the identification of
arrhythmia and for continuous monitoring of patients. In
this respect, reduced lead ECG systems are a promising
opportunity to diagnose cardiac abnormalities while be-
ing more convenient. Some cost-effective and wearable
ECG devices are already available on the market, however,
there is limited evidence about using reduced-lead ECGs
to diagnose a wide range of abnormalities [1]. Several
studies focused on proposing a subset of the 12-lead ECG
to identify cardiac pathologies [2—4], while other studies
proposed online classification algorithms of cardiac abnor-
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malities, which can be easily integrated in wearable de-
vices and require a limited number of leads. [5,6].

Several studies concluded that deep learning offers high
performing methods for pattern recognition in ECG sig-
nals, with either twelve or less leads [7]. Convolutional
Neural Networks (CNNs) are suitable to extract hierarchi-
cal patterns as well as local features from ECG signals
[8,9]. Recurrent neural networks (RNNs), on the other
hand, capture temporal dependencies, handle inputs of var-
ious lengths, and can also be used to summarize local fea-
tures to generate global features. Bidirectional Long Short
Term Memory Networks (LSTMs), a variant of RNNs, im-
prove performance and interpretability through their atten-
tion mechanism [10, 11]. Convolutional Recurrent Neural
Networks (CRNNs) can handle long ECG signals of dif-
ferent lengths and multi-channel inputs. CRNNs have also
been applied with attention mechanisms combined with
expert features for disease detection [12, 13]. The state-
of-the-art methods for signal denoising are autoencoders
(AEs), which simultaneously conduct reconstruction and
classification procedures for signal compression[14], and
Generative Adversarial Networks (GANSs), which allow to
create synthetic datasets. To resolve the common prob-
lem of class imbalance, data augmentation has been per-
formed with AEs and GANSs to generate synthetic training
sets [15]. Finally, various feature engineering techniques
have been applied in previous studies to create features that
may help classify ECG signals [16].

Although many of these algorithms are continually
emerging and improving, achieving accurate classification
of cardiac diseases remains a challenge. The objective of
this study is to identify a high performing algorithm that
can classify cardiac abnormalities from either 12-lead, 6-
lead, 3-lead or 2-lead ECG signals, with a combination of
the above state of the art methods, preprocessing, data aug-
mentation, and feature selection [17], [1]. In particular, in
this study, we investigated the use of CRNNs to identify
cardiac abnormalities in 12, 6, 4, 3, and 2-lead ECG data.
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2. Method

2.1. Data Preprocessing

Baseline wander was removed by means of a bandpass
type I Chebysheyv filter, with cut-off frequencies [0.5, 100]
Hz. All recordings were resized to 10 seconds by truncat-
ing it or by zero padding. Then, recordings were resampled
to 500 HZ, yielding 5000 data points each.

2.2. Model Architecture

First a benchmark CNN-based model was implemented,
which later was extended to a CRNN-based model. Both
models were implemented in Python using the Keras li-
brary, and trained on a Volta V100-SXM2 GPU. Since we
are dealing with a multi-label classification problem, bi-
nary cross entropy was chosen as loss function. The Adam
optimizer was used because it is one of the most com-
monly used optimization algorithms, and ReLU as acti-
vation function for all the layers except the last, where a
sigmoid function was used. The sigmoid function is se-
lected as the last layer because it maps all the outputs in
the 0 — 1 range, while ReL.U was used in the previous lay-
ers due to its faster derivative computation time. Training
was conducted with 10 epochs and using batches of size
128, which was determined empirically.

The benchmark method consists of one CNN with time
domain ECG signals as input. We selected a CNN as a
benchmark model because of their ability to handle signals
along with a low training time compared to other Neural
Networks [7]. Moreover, CNNs act as a foundation of sev-
eral complex Neural Networks, like ResNets or CRNNs.
Throughout this paper, the convolutional layers used are
1D convolutional layers. The reason for this is that the
there is a logical ordering over time, while over the leads
convolution is not logical. Furthermore, max pooling is
used to avoid overfitting on the noise and to have better
performance on new data. Moreover, the networks apply
batch normalization in order to improve time gain, perfor-
mance and dropout. A dropout rate of 0.3 resulted in a
model that could generalize best, while a higher dropout
resulted in the loss of too much information. Moreover,
a learning rate of 0.01 was used in this setting to speed
up the learning process, and a clipping value of 0.5 was
implemented to avoid exploding gradients, given the large
amount of parameters.

The proposed CRNN-model consists of two neural net-
works running in parallel, prior to concatenation, with
fully connected layers and a final sigmoid layer. As illus-
trated in Figure 1, the model is composed of two CRNNSs,
one taking the ECG multi-lead recording as an input and
another taking the PQRST fiducial points as input. The
idea to have fiducial points as an input is that the time

points of ECG waves may be important for recognizing
arrhythmia. The motivation for choosing CRNNs was that
the Long Short-term Memory (LSTM) [18] layer they in-
clude, allows to capture time-dependencies between data
points. The concatenation, the last three fully connected
layers and the sigmoid layer, ensures that the captured in-
formation from the two CRNNSs are combined into one out-
put, a prediction of which classes a specific recording be-
longs to. The sigmoid layer creates a probability per class;
the classes that exceed the cutoff ratio are selected as pre-
dicted classes. In this paper a cutoff ratio of 0.6 was em-

pirically determined.
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Figure 1. Scheme of the model

2.3. CRNN with ECG input

As introduced above, the first CRNN in the proposed
model uses ECG signals as inputs, and it consists of an
LSTM (20 hidden units), five convolutional layers with
max pooling, and two dropout layers with a convolutional
layer. At the end of the network there is a fully connected
layer, as illustrated in Figure 2. In the first 4 convolu-
tional blocks, the size of the convolutional kernels was
set to 5 x 5. The last two convolutional blocks, focusing
on smaller segments of the ECG, included a convolutional
kernel size of 4 x 4.

The preprocessed ECG recordings are fed as input and
have a size of 5000 x 12 (10 sec. sampled at 500 Hz, for
each of the 12-leads).

CRNN

Input

Figure 2. Scheme of the two CRNNs

2.4. CRNN with fiducial points input

The fiducial points CRNN was constructed to gain more
specific information about the recordings. The QRS com-
plex, P and T wave fiducial points were extracted by means
of a wavelet-based ECG delineation algorithm using the
WTdelineator library in Python [19]. As illustrated in Fig-
ure 3, 13 fiducial points were extracted, including the lo-
cation of onset and end of the P, Q, R, S, and T waves,
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the first and second peak of the P and T waves, and the
peaks of the Q, R and S wave. Every feature is encoded
to a specific number (for example: 1 for the onset of the
P wave), and for every recording an array is built with the
length of the recording (5000). When a data point at lo-
cation % corresponds to one of the 13 fiducial points, the
value of element 1 is set to the corresponding detected fea-
ture. Locations with no detected features have a value of
Zero.
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Figure 3. Fiducial points of the PQRST complex used as
inputs to the second CRNN network.

The CRNN that uses the fiducial points as input consists
of the same architecture of the CRNN with ECG signals as
inputs, as illustrated in Figure 2.

3. Results

In order to evaluate the two models, we performed cross
validation on the training set. The accuracy scores of the
benchmark and proposed model, for 2, 3, 4, 6, and 12 leads
are illustrated in Table 1.

Accuracy per model 2leads 3leads 4leads 6leads 12 leads

Benchmark model 0.30 0.42 0.42 0.30 0.46

Improved model 0.40 0.38 0.37 0.39 0.37
Table 1. Internal accuracy scores for the 2, 3, 4, 6 and
12 lead models of the benchmark and improved models,
obtained from training data evaluation.

As can be seen in Table 2, using the evaluation code
provided by Physionet, several other metric scores were
calculated, utilizing the scored labels only.

4. Discussion

As showed in Table 2, the benchmark model predicts
about 40% of the recordings correctly (40% accuracy).

Scores AUROC AUPRC Accuracy F-measure Challenge metric
Benchmark model  0.83 0.29 0.40 0.19 0.15
Improved model 0.50 0.06 0.06 0.00 —0.59

Table 2. 12-lead metric scores of the benchmark and im-

proved models, obtained from training data evaluation.

The F'1-measure, which represents the harmonic mean of
precision and recall, is 0.19.

The area under the curve of the receiver characteris-
tic operator (AUROC) for our multi-class classification
problem was implemented in a way that, for each class,
the score is generated as classifying the class against all
other classes. The AUROC score obtained this way for all
classes is 0.81. This metric provides an aggregate measure
of performance across all possible classification thresholds
and tells how much the model is capable of distinguishing
between classes on a 0 to 1 scale.

The area under the precision-recall curve (AUPRC)
score expresses how much the model is able to find all
cardiac arrhythmia cases (which means high recall), with-
out falsely marking negative examples (healthy patients) as
positive for the arrhythmia (which would mean high pre-
cision). Since different classes have different fractions of
positive examples, each class has a different baseline. The
score of the model, 0.29, is the average of the AUPRC
scores for each class.

When looking at the performance of the benchmark and
improved model (Table 1 and 2), it can be noted that the
improved model scores are significantly lower.

5. Conclusion

Even though theoretically, the improved model is ex-
pected to show better performance through the use of en-
gineered features, our results from the improved model are
worse. This could be due to how the fiducial points are pro-
vided as input to the second CRNN. Currently, the fiducial
points are stored in a single vector of length 5000, where
an integer indicates if and what fiducial point is present
at a specif location (corresponding to a specific discrete
time index). Although the LSTM might be able to han-
dle such an input, the convolutional layers may not, since
they smooth things out, and the resulting values may lose
meaning for the convolutional part.

There are several ways by which performance of the cur-
rent model could be improved. First, various experiments
can be run to simplify the proposed architecture, as well
as improve the training time. The proposed architecture
is an ensemble of two CRNNSs networks, which results in
longer training times. This can be problematic when train-
ing time is limited. Secondly, as stated earlier, the cur-
rent implementation of the engineered features decreases
the F'1, AUROC and AUPRC scores. This outcome is not
aligned with our original hypothesis that providing more

Page 3



diverse information to the Neural Network should result in
improving performance. However, the problem may be on
how the information is provided to the model. Moreover,
our model could be improved by adding an additional Neu-
ral Network with frequency domain information as input.
This may provide auxiliary information that is not captured
by the current CRNNs. Furthermore, hyper-parameter tun-
ing can further enhance the model’s performance.
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