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Abstract 

Introduction: The electrocardiogram (ECG) is the most 

common diagnostic tool for screening cardiovascular 

diseases. PhysioNet/Computing in Cardiology Challenge 

2021 aims to classify cardiac abnormalities from twelve-

lead, six-lead, four-lead, three-lead, and two-lead ECGs. 

Methods: ECGs were downsampled to 250 Hz and then 

applied with a bandpass filter to reduce noise. The 

unscored label named VEB was transformed to PVC. The 

ECGs labeled as AF in the Ningbo Database were 

relabeled as AFL or AF. All ECGs were randomly shuffled 

and divided into a training set and a validation set at 4:1. 

Five models based on a deep residual convolutional neural 

network were proposed to make classification from 

different dimensions of ECGs. A novel loss calculation 

method was proposed to balance the different labeling 

tendency of different source data sets. Results: Our team, 

USST_Med, received an official test score of 0.54, 0.52, 

0.50, 0.51, and 0.50 on twelve-lead, six-lead, four-lead, 

three-lead, and two-lead ECG test sets, respectively. The 

scores are ranked 5th, 3rd, 7th, 5th and 7th, respectively. 

Conclusion: The proposed models performed well on 

classifying ECGs and have potential for clinical 

application. 

 

 

1. Introduction 

Cardiovascular disease is responsible for most deaths 

worldwide in the world [1]. Early detection and diagnosis 

are of great significance for reducing mortality. 

Electrocardiography is the most popular and non-invasive 

method for screening heart disease. Standard 

electrocardiogram (ECG) has 12 leads including 6 limb 

leads and 6 chest leads showing heart electrical activity 

transmission in the coronal plane and the transverse plane. 

Cardiologists check the ECG lead by lead and beat by beat 

to make a diagnostic conclusion. ECG diagnosis is a time-

consuming technical task, and usually doctors need years 

of training. Even so, high-intensity diagnostic workloads 

are prone to misdiagnosis. With the rise of wearable 

devices, more and more electrocardiography devices have 

entered daily life. Many of them can achieve 24-hour ECG 

monitoring, so a large number of ECGs are generated at all 

times. It is unrealistic to rely solely on doctors for 

diagnosis. Fully automatic diagnosis can greatly reduce the 

workloads of doctors and is a useful supplement to manual 

diagnosis. With the development of artificial intelligence, 

many automatic ECG classification algorithms emerge [2-

5]. It is reported that the method based on deep residual 

neural network can surpass the cardiologists in single-lead 

ECG classification [5]. However, different ECG 

acquisition devices, different placement positions of leads, 

ethnic differences, and geographic differences will 

challenge the robustness of automatic diagnosis algorithms. 

Some wearable electrocardiographs can only produce 

ECGs with a limited number of leads. Whether the 

information contained in these ECGs can be comparable to 

standard 12-lead ECGs, and whether 2 or 3 leads can meet 

the basic clinical needs, are interesting questions to be 

explored. The PhysioNet/Computing in Cardiology 

Challenge 2021 [6, 7] aims to classify cardiac 

abnormalities from 12-lead, 6-lead, 4-lead, 3-lead, and 2-

lead ECGs. This study attempts to develop robust and high-

precision algorithms for ECG classification. 

 

2. Methods 

The overall flow chart of this study is shown in Fig. 1. 

Briefly, the data are preprocessed to have the same 

resolution and remove noises. Some labels that have the 

same scoring weights or medical significance were merged 

together. The deep learning model designed for 12-lead 

data was trained for the first round and then evaluated all 

data to compare the results and the labels. The recordings 

with high probabilities of wrong labels were screened out 

to create the mask. The model was retrained on the training 

set and the optimal threshold was determined on the 

validation set. 

 

2.1. Datasets 

The public training set contains 88,253 recordings from 

7 databases including the China Physiological Signal 

Challenge (CPSC) 2018, the St. Petersburg INCART 12-
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lead Arrhythmia Database, the Physikalisch-Technische 

Bundesanstalt (PTB) database, PTB-XL database, the 

Georgia 12-lead ECG Challenge (G12EC) Database, the 

Chapman-Shaoxing database and the Ningbo database. 

Among them, INCART database has 74 recordings and 

PTB database has 516 recordings. These two databases 

have fewer recordings and longer sampling time compared 

with other databases. And they provide very limited labels 

that are valuable for scoring. Considering the complexity 

of data processing and the performance of the model, we 

discarded these two databases. The remaining 87,663 

recordings were randomly divided into the local training 

set and validation set, with a ratio of 4 to 1. 

 

2.2. Data preprocessing 

ECGs were loaded with SciPy module in Python. For 

each lead, data values were divided by the amplitude 

resolution and subtracted by the mean value of that lead. 

These values then represent the voltage in mV. Values 

greater than 20 mV indicate abnormal recorded signals. 

They exist in some recordings in CPSC database. These 

outliers appear like spikes, and were replaced by the 

normal values next to them [8]. Data were then 

downsampled to 250 Hz with fast Fourier transformation 

and filtered by an FIR bandpass filter with bandwidth 

between 0.5 Hz and 45 Hz. 

 

2.3. Data relabeling 

There are 30 of 133 diagnoses used for evaluating 

challengers’ algorithms. According to the scoring 

algorithm provided by the challenge organizer, some labels 

are considered as the same diagnosis. So we merged labels 

CRBBB and RBBB, CLBBB and LBBB, PAC and SVPB, 

and PVC and VPB, respectively. VEB is not scored in the 

scoring algorithm, but we think it has the same medical 

meaning with PVC or VPB. So we merged VEB with PVC 

and VPB.  

There are 4 diagnoses that have fewer than 700 ECG 

recordings, namely BBB, Brady, PRWP and LPR. We 

removed them from the labels of all recordings. Thus there 

are 22 classes to be classified. 

In Ningbo database, 7,615 recordings are labelled as 

AFL whereas none is labelled as AF. Local cardiologists 

believe that most of them are wrong. To relabel these 

recordings, we constructed a binary classification model 

and trained this model with all data except the data from 

Ningbo database. Then we predicted the AFL recordings 

of Ningbo database with the trained model and relabelled 

these recordings with predicted results.  

In CPSC database, there are only 6 diagnoses belong to 

scoring labels along with VEB. We believe that these 

diagnoses are incomplete. To supplement the missing 

labels, we constructed a deep learning model that can 

classify the remaining 15 scoring diagnoses and trained the 

model with all data except CPSC data. Then all recordings 

in CPSC database were predicted with the trained model. 

If the inference result showed that the probability of one 

class was greater than 0.8, the new diagnosis was added to 

the corresponding labels. 

 

2.4. Deep learning models architecture 

This year’s challenge is to classify ECGs of five 

different numbers of leads. We built five models that share 

the same architecture except for the input layer that has 

different shapes. The main architecture consists of one 

CNN layer, one max pooling layer, eight Residual blocks, 

one global max pooling layer and two fully connected 

layers (Fig. 2). Each Residual block used SENet (Squeeze-

and-Excitation Networks) [9] to get channel attention and 

used Mish as the activation function. Sigmoid was used as 

the activation function in the last layer. The dimension of 

the model input is consistent with the number of leads, and 

the length is set to be variable to adapt to different lengths 

of ECG. The 4 discarded classes are always set to 0. 

 

2.5. Model training and the loss functions 

The models were trained using Keras with TensorFlow 

as the backend. Adam was selected as the optimizer. The 

batch size was set to 256. Warm start training strategy was 

applied. In detail, the learning rate was set to 0.0001 in the 

first two epochs, and then set to 0.001 for other epochs. 

Early stopping strategy was used to prevent model 

overtraining. The training process stopped when the loss 

hadn’t decreased for 4 epochs. 

The models have gone through two rounds of training. 

The focal loss [10] was used in the first round of training. 

Its equation is shown as follows: 

 

𝐿𝑓𝑜𝑐𝑎𝑙 =  {
𝐿+ = (1 − 𝑝)2 ∗ log(𝑝)        

 
𝐿− = 0.1 ∗ 𝑝2 ∗ log(1 − 𝑝)

              (1) 

 

Where p is the model’s output probability, 𝐿+ is the loss 

for positive labels and 𝐿− is the loss for negative labels. 

 

 
 

Figure 1. The overall flow chart of this study. 
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All recordings were fed into the deep learning model 

and the outputs were compared with the corresponding 

labels to generate masks. In detail, the masks had the same 

dimensions with the labels and were initially set to 1 for all 

values. The model’s output denotes the probabilities for 26 

classes of one recording. If the model predicted that one 

recording was classified as one class with the probability 

greater than 0.9 whereas this class was not in the labels, we 

set the mask for this class to 0. Similarly, when the model 

predicted that one recording was classified as one class 

with the probability less than 0.1 whereas this class was in 

the labels, we set the mask for this class to 0, too.  

The second round of training used the modified 

asymmetric loss [11] which discarded the loss where the 

mask value was 0. The loss function is shown as follows: 

 

𝑃𝑛𝑒𝑔 =  max (𝑝 − 0.05,0)        (2) 

 

𝑃𝑝𝑜𝑠 =  1 − max (0.99 − 𝑝, 0)      (3) 

 

𝐿 =  {
𝐿+ = 𝑚 ∗ (1 − 𝑃𝑝𝑜𝑠) ∗ log(𝑃𝑝𝑜𝑠)

 
𝐿− = 𝑚 ∗ 𝑃𝑛𝑒𝑔

2 ∗ log(1 − 𝑃𝑝𝑜𝑠)    
    (4) 

 

Where 𝑃𝑛𝑒𝑔 is the output probability when the true label 

is 0, 𝑃𝑝𝑜𝑠 is the output probability when the true label is 1, 

and m is the mask. 

 

2.6. Model inference 

The ECG recordings were pre-processed as described at 

section 2.1. Since Our models were designed with adaptive 

input length, the ECG data can be directly fed into the deep 

learning models without any segmentation. Because the 

training data are extremely imbalanced, the optimal 

thresholds for each class are different. We performed two 

step search that was proposed by Zhao et al.[12]. First, we 

set the thresholds of all classes to the same value, ranging 

from 0.1 to 0.9, with an increase of 0.1 each time, and 

determined the optimal threshold after calculating the 

scores respectively. Second, only the threshold of one class 

was changed from 0.2 to 0.8, with an increase of 0.01 each 

time. The thresholds of other classes used the best 

thresholds determined in the first step. After calculating the 

scores separately, the threshold corresponding to the 

highest score was the optimal threshold for that class. 

 

3. Results 

In order to make the challenge score generated on the 

validation set consistent with the official test set as much 

as possible, we only selected the part of the validation set 

that belongs to the G12EC database as our own validation 

set. As shown in Table 1, when the thresholds were fixed 

at 0.5, the challenge score for 12-lead model was 0.54. 

After thresholds optimization, the challenge score reached 

0.61 which was 0.07 higher than before. And the challenge 

scores for 6-lead, 4-lead, 3-lead, 2-lead models on the 

validation set were 0.60, 0.61, 0.61 and 0.59, respectively 

(Table 2).  

These models’ performance was further tested on the 

hidden validation set. As shown in Table 2, the five models 

for different leads ECGs achieved the challenge scores of 

 
 

Figure 2. The architecture of the deep learning model.  
 

Table 1. Performance of proposed 12-lead model on 

local validation set. 

 

Thresholds Challenge Score 

0.5 0.54 

optimized 0.61 

 

Table 2. Performance of proposed models on the local 

validation set, official validation set and test set. 

 

Model 

Challenge Score 

Local 

validation set 

official 

validation set 

official 

test set 

12-lead 0.61 0.60 0.54 

6-lead 0.60 0.58 0.52 

4-lead 0.61 0.54 0.50 

3-lead 0.61 0.55 0.51 

2-lead 0.59 0.54 0.50 
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0.60, 0.58, 0.54, 0.55, and 0.54, respectively. The first two 

scores were under optimal thresholds. And the other three 

scores were with the fixed thresholds set at 0.5. Finally, our 

team received a full test score of 0.54, 0.52, 0.50, 0.51, and 

0.50 on five test datasets, and ranked 5th, 3rd, 7th, 5th and 7th, 

respectively. 

 

4. Discussion and Conclusions 

The results shown in Table 2 indicate that the challenge 

scores of our models on the local validation set and the 

official online validation set are very close, especially for 

the 12-lead models and 6-lead models. It must be pointed 

out here that our ideal code did not run successfully online 

due to some technical reasons, so the version of the code 

used in the competition is sub-optimal. The thresholds used 

for 4-lead, 3-lead and 2-lead models in this version are set 

to 0.5, which are apparently not optimal. While other 

thresholds including the ones used in local validation set 

are all optimized. So the online results of models with less 

than 6 leads are much lower than the results of 12-lead 

model and 6-lead model. 

The results show that the model trained with 12-lead 

data has the best performance. The results of the models 

trained with 4-lead and 3-lead data are comparable to the 

results of the 12-lead model, while the results of the model 

trained with 6-lead and 2-lead data are slightly worse. It 

could be explained by the leads positions. As we 

mentioned in the introduction, the standard 12-lead ECG 

has 6 limb leads and 6 chest leads. The 12-lead, 4-lead and 

3-lead data used in this competition contains at least one 

limb lead and one chest lead, whereas the 6-lead and 2-lead 

data contains limb leads only. The hybrid combination can 

evaluate the ECG from different angles and help the 

correct classification of the ECG. 

There are several limitations in our study. Firstly, the 

effects of different loss functions need to be studied 

systematically. The proposed loss function could be further 

tuned. Secondly, the submitted code is not the best version, 

which affects the further analysis of the results. Thirdly, 

the role of this mask in model performance needs further 

exploration. 

In conclusion, the proposed deep learning models and 

data processing method showed great potential for clinical 

application in automatically classifying ECGs. 
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