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Abstract 

This study presents a machine learning (ML) model that 
predicts onset of sepsis earlier in time than what is 
possible using common severity scoring systems. Our 
study’s focus is on building solutions that maximizes 
sepsis prediction, is real-world implementable and usable 
by care providers particularly in developing countries 
like India. We have selected features based on the 
observation that patient vitals are available on an hourly 
basis, whereas lab results if available are less frequent. 
To capture the time series nature of the data, we trained 
the model using long short term memory (LSTM), a 
version of recurrent neural network (RNN) architecture. 
To capture locale specific pathology baseline, we have 
engineered features using two methods. We define a 
minimum & maximum value for vitals and lab tests and 
normalize the incoming data against this min-max value. 
Secondly, to leverage sparsely available lab data that 
signal increased sepsis risk, we define a synthetic “risk” 
feature. This risk feature is assigned a higher score when 
certain lab values are available and exceed a threshold. 
Our solution achieved an official utility score of 0.179 on 
the full test under the team name LDBR. Finally, we 
present practical considerations we discovered from our 
interactions with local hospitals and health-care 
providers. 
 

1 Background 
 

Sepsis is a life-threatening condition that occurs 
when the body's response to infection causes tissue 
damage, organ failure, or death. Sepsis is caused by an 
inflammatory immune response triggered by an infection 
which could be bacterial, fungal, or viral. In the U.S., 
nearly 1.7 million people develop sepsis and 270,000 
people die from sepsis each year, many of the death being 
in hospitals. Internationally, an estimated 30 million 
people develop sepsis and 6 million people die from 
sepsis each year.[3]. An estimated 4.2 million newborns 
and children are affected by sepsis.  

 
Sepsis is an enigmatic condition with heterogeneity 

in the host’s response to the condition. Current techniques 
detect sepsis using scoring systems. However, these 
techniques do not leverage the inherent information 
available in-patient history, previous learnings and 
patterns inherent about sepsis manifestation. Currently, 
by the time sepsis is detected and the cause is identified, 
organ damage has already progressed to a potentially 
irreversible stage.  Given the high incidence levels of 
sepsis and potential long-term damage to organs and/or 
loss of life, early detection of sepsis is gaining 
considerable attention in the machine learning 
community [2].  It is possible that the state-of-the-art 
machine learning techniques trained on large and diverse 
datasets can extract subtle, but highly discriminating 
leading-indicators for the onset of sepsis. 

Machine learning is a subset of artificial 
intelligence, which builds sophisticated mathematical 
models of a phenomenon using multivariate measured 
data.  The model is typically used to make predictions and 
support decision-making. Recently neural networks, 
particularly deep neural networks, have shown significant 
capabilities to model complex phenomena. In particular, 
Recurrent Neural Network (RNN)  and LSTM within 
RNN  has proved very effective in applications such as 
natural language modelling, translating languages, speech 
recognition, handwriting recognition, time-series 
prediction and anomaly detection. 

 

2 Our Approach 
 

In this work, we have taken a pragmatic approach on 
how to add value to the sepsis prediction problem. 
Detecting sepsis in developing countries implies working 
in a not-so-data-rich environment; both in terms of 
features and temporal sampling. The prediction model 
needs to be minimally complex, so that it is easily tune 
and adapted to local needs. We set out to find a solution 
which is incrementally better than the current situation in 
developing countries, rather than a 100% solution.  
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Given this minimally-viable-algorithm thinking, our 

first approach was to use a random forest decision tree. 
Random forest provides the ability to understand the 
influence of each feature in the prediction and also gives 
the care provider the ability to understand and interpret 
the prediction better than a black box algorithm that 
provides a number. While this approach gave us good 
results with the initial small dataset, it did not have the 
discriminating power when applied to the sepsis 
challenge dataset.  

Next, we used a logistic-regression model using 
selected raw-features and synthetic compounded 
features.  While the training was quick, it exhibited good 
learning as shown by low overall cost in both the training 
and validation data, the area under the receiver-operating-
curve (ROC) stayed below 0.6.  

Furthermore, given that the input data is temporally-
sequential in nature and the final goal is to predict sepsis 
six hours ahead of the current best-practice, we choose to 
use a LSTM network, a type of recurrent neural network 
where the network has memory over extended time-
periods and thus can learn temporal-signatures in addition 
to feature-signatures.  

 
Figure 1: Major Phases in a Machine Learning 
Application Development 

The process of training any machine learning 
algorithm can  be represented using the block diagram 
shown in Figure 1.   

The first block represents the act of capturing 
data about the patient, their symptoms and their health 
history.  It could include physiological samples such as 
temperature, pressure, heart-rate captured at regular 
intervals in a hospital setting. It could also include 
laboratory test results as an when they are made available. 
Work by Futoma et al. [1] is an example of a rich sepsis 
data set. 

Typically, the raw data is captured across a 
multiplicity of instruments, laboratory reports, and patient 
questionnaires. Transcribing the data and consolidating 
them into a single source can be time consuming and 
error prone. Outlier detection and strategies for dealing 
with missing data are important at this stage.  Patient 
privacy, data security, data-hosting, data-transport and 
data-format are all important considerations in the process 
of making the system operational. 

Feature engineering is the art and science of 
determining which part of the data to use and how to use 
it efficiently. Typically, this step also involves annotating 
the data with labels which are needed for supervised 
learning applications. Collating data, conditioning it and 
selecting features for training are often the most time-
consuming aspects of machine learning. Currently, there 

are companies dedicated to annotate large datasets 
including medical images, video, audio, hospital, 
clinic and laboratory data-sets.   

The processing-architecture involves 
determining the right algorithm class that should be used 
given the problem statement. This decision should 
consider data-characteristics, available computational 
capacity and the application’s real-time/non-real-time 
requirements. Lately other considerations  have emerged - 
such as  the requirement to cast the model’s decision 
rational and explainable to a human. There are also 
emerging requirements for continual learning as external 
problem conditions change. 

The training phase involves using the feature-
engineered datasets, the network architecture and 
developing a mathematical model of the phenomena. 
A  trained model is typically used to predict a future state 
for temporal data (example: tomorrow’s weather) or 
classifying an object input to the model (example: cat 
picture).  

The operational phase is about how the trained 
model is packaged, computationally executed and used 
for decision-making. Our current focus of this phase is  
on generalization. Going forward it will involve 
everything from end-use platform capabilities, explain-
ability, decision-liability, customization, and regulatory 
compliance. 
 

3 Data Source & Feature Engineering 
 

Data used for this study is provided as part of the 
PhysioNet challenge[3]This data, made available to 
challenge participants, is from ICU patients from two 
separate hospitals. Each patient has a csv file where the 
column headers list the Vitals, Laboratory tests and 
Demographic values, while  each row consists of hourly 
values  for these parameters when available. A total of 
40,366 patient files are available as part of this challenge.  

Feature Description : We have   noted that the 
hourly-sampled feature data varies widely across patients. 
Sequential features: Given the clinical importance of 
vitals and that vital samples are available over 90% of the 
inputs, we use vital values of HR, O2Sat, SBP, DBP, 
MAP, Temp, Resp as our primary features. We use min-
max normalization for each of the features.  To capture 
locale specific pathology baseline, we have engineered 
features using two concepts which we refer to as a “local 
baseline” and a “synthetic risk feature”.  

We define a “local baseline” as minimum and 
maximum value for vitals and a threshold value for lab 
data. We normalize the incoming data against this 
baseline value. Clinically, certain lab test values such 
Lactate, pH and/or WBC are used to determine sepsis. 
However, these values are not routinely monitored and 
thus are missing for over 90% of the input. In order to 
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deal with this situation, we defined a synthetic “risk” 
feature, where we check if the lab values for Lactate, pH 
and/or WBC are available for the selected time step (time 
step is a LSTM parameter). If the lab value is available 
and exceeds a threshold we set the risk feature as high. 
This technique helps include important signals that are 
available non-periodically from lab tests and other 
clinical events.  

Table 1 lists the feature columns and their frequency 
distribution.  As noted in the table a majority of the labels 
are not sampled or updated on an hourly basis. 

 
Table 1: Features in the sepsis challenge database and their 
availability 

Non-sequential features: The following 
demographic= features are available for every patient: 
Age, Gender, Hospital Admission Time, and ICU length 
of stay. Sepsis Label is given for each row to indicate if 
the patient has been diagnosed with Sepsis  at that time 
instant. We use Gender, Age & ICU length of stay as 
features after binning.  

 

4 Architecture and Training  
 

The sepsis challenge is to detect sepsis six hours 
ahead of when it is currently detected in hospitals. The 
onset of sepsis can lead to irreversible damage to human 
organs and hence it should be detected and addressed as 
soon as it sets in. Clinically, care givers look for vitals 
and lab trends over time to detect the onset of sepsis. In 
order to learn temporal trends in a ML model, we choose 
LSTM, that uses feedback and memory-units to glean 
information from time sequences data. Figure 2 is a 

representation of the data as fed to the LSTM network.  
At each timestep tn , t(n+1), t(n+2)  and so on a set of features 
is input in to the LSTM and a sepsis/non-sepsis 
classification is expected as output. 
 

 
Figure 2: Temporal nature of data fed into the LSTM 

Our implementation used Tensorflow v1.14 
(tf.keras) and schematically shown in Figure 3. The first 
layer in our LSTM had 64 units; this was followed by a 
dropout layer, then a dense layer with 64 nodes and “relu” 
activation and finally a single node dense layer with 
sigmoid activation. The LSTM layer has a kernel and bias 
regularization of 0.2 and activity regularization of 0.1. 
The optimizer is “Adam” and loss function is “mse”.  
Adam optimizer is based on adaptive moment estimation 
and “MSE” is mean squared error.  

Figure 3 LSTM architecture for Sepsis detection 

The training and testing data were split 75:25 and 
number of epochs set to 50. Given the unbalanced nature 
of the target, we used class weights for not-sepsis set to 
0.01 and for sepsis set to 1000. We used early stopping 
and started with a learning rate of 0.0001 for up to ten 
epochs and increased the learning rate after ten epochs.  

 

5 Results 
 

Figure 4 graphs Receiver Operating Characteristic 
(ROC) curve, which shows the performance of the model. 
The output layer in our model is a layer with sigmoid 
activation that returns the probability of sepsis In order to 
classify the output as Sepsis or Not-Sepsis we need to 
choose an operating threshold. Figure 5 plots the 
precision and recall curve for various threshold values 
that could be used.  Given that an untreated case of sepsis 
could lead to organ-failure or death, we argue for 
maximizing True Positives at the expense of False 

Data availability Column(Feature) labels  

Columns values 
available 100% 

Age, Gender, ICULOS, 
HospitalAdminTime, SepsisLabel 

Column values available 
more then 80% 

HR, O2Sat, SBP, MAP, Resp 

Columns values 
available 50% to 70% 

DBP, Temp 

Columns values 
available 10% to 20% 

Glucose 

Column values available 
less than 10%  

EtCo2, BaseExcess, HCO3, FiO2, 
pH, PaCO2, SaO2, AST, BUN, 
ALkalinephos, Calcium, 
Chloride, Creatinine, Bilirubin, 
Lactate, Magnesium, Phosphate, 
Potassium, Bilirubin, Troponin, 
Hct, Hgb, PT, WBC, Fibrinogen, 
Platelets 
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Positives. In other words, we prioritized increasing Recall 
ever it meant lower Precision.  

 
Figure 4: ROC of the sepsis prediction model with our 
operating point shown on the curve  

 
Figure 5: Precision and Recall as a function of the threshold at 
the output node 

We chose the threshold value of 0.028 to maximize 
the number of True Positives (patients with Sepsis). At 
this threshold our recall value is 0.4 and the precision 
value is 0.08 as shown in Figure 5. The algorithm is 
graded for its binary classification performance using the 
organizer’s utility function, which rewards(penalizes) 
classifiers for early (late) predictions of sepsis [3]. Our 
solution utility score on the full test set is 0.179. The 
challenge winners utility score is 0.36. 

 

6 Deployment Considerations 
 

In hospital setting, the system has to be robust  and 
adaptable. In light of this, feature selection should 
acknowledge the cost and timeliness of acquiring specific 
features and the incremental information they add to the 
decision making process. It is important to have a well-
thought-out fill in strategy when data for that feature is 
not available. This study is a case of using offline training 
of the model and using the model for dynamic inferences 
for each patient for a given time step. The offline 
approach is powerful in its simplicity during the training 

process, however an operational model will require the 
capability and process to incrementally update the model 
to reflect incoming data over time.  

 

7 Conclusions and Future steps 
 

The sepsis challenge organizers use an official 
“utility score”  which rewards classifiers for early 
predictions of sepsis and penalizes them for late/missed 
predictions and for predictions of sepsis in non-sepsis 
patients. Our LSTM model scored a utility-score of 0.199, 
while the leader at the time of submission was at 0.433. 
Given this we realize that our model can be improved and 
we intend to continue refining it by improved how we 
selected the features, handled missing and noisy features, 
by defining a more sophisticated risk-factor synthetic 
feature and by training on more datasets. 

We had significant learning in our discussions with 
local health-care providers and hospitals which we share 
below.  The ML model’s prediction should be explainable 
to get adoption by care providers.  As a first step it would 
be helpful to provide weights of the used features for a 
given score. The model will also need a way to 
incorporate locale/regional influences, e.g. baseline 
Glucose readings which can vary based on 
ethnicity/region. The risk scoring system needs to fed into 
an alerting system that is easy to use by care providers 
and explainable. As mentioned earlier, ongoing training 
of the model, continuous evaluation of the score, 
subsequent actions by the care providers must be 
incorporated in the model training.  

We like to thank Dr. Arvind Kasaragod for his 
clinical inputs on the protocol for sepsis detection. 
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