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Abstract 

Sepsis is the final common pathway for many 
infections, whereby the body’s immune response leads to 
organ failure, and eventually death. It is associated with 
high mortality rates and, if survived, significant 
morbidity. Early detection is imperative to improve 
outcomes. Yet, there is also a need to avoid a high false 
alarm rate. The aim of this study was to develop and 
evaluate a simple algorithm for early sepsis detection. 

Significant missing data were encountered in the 
dataset, which were forward-filled or substituted with 
population means. Clinically relevant variable 
combinations were added along with transformation 
features including dichotomization, z-scores, first 
derivative, and changes from baseline. A logistic 
regression model was used to identify candidate features 
and build the overall risk score function for prediction. 

The final candidate score had areas under the receiver 
operating characteristic curve of 0.747, 0.760, and 0.783 
for the three test data sets. It had accuracies of 0.795, 
0.889, 0.815, respectively, and an overall utility score for 
the full test set of 0.249 using a cutoff of 0.024. 

Evaluation indicated significant potential for further 
optimization, including reduction of false-positive 
predictions. Adding features capturing change over time 
is expected to provide scope for further investigation. 

 
1. Introduction 

Artificial intelligence (AI) applications for clinical 
decision making and outcome prediction are 
demonstrating potential across the human lifespan [1], 
especially as access to integrated health care process and 
outcome data becomes easier. AI provides an opportunity 
to streamline clinical workflow and the promise of safer, 
more efficient, and more cost effective care [1], [2].  

The intensive care unit (ICU) is a data-rich 
environment with a wide range of continuously monitored 
physiological variables that are responsive to clinical 
interventions over short time periods, and capture 
outcomes that are well-defined and generally quantifiable 

[3]. Thus, the ICU provides fertile ground for the 
development and evaluation of AI-based prediction 
models of individualized risks and outcomes.  

Sepsis is the final common pathway of many 
infections, whereby the body’s immune response leads to 
organ failure, and eventually death [4]. It is associated 
with high mortality rates; if survived, it results in 
significant morbidity [5]. In Canada, it was the 12th 
leading cause of death in 2011, with about 1 in 18 deaths 
involving sepsis [6]. 

Early detection and antibiotic treatment are critical for 
improving outcomes. Each hour of delayed treatment has 
been associated with a 4-8% increase in mortality [7]. 
However, there is also a need to avoid an overly high 
false alarm rate [8], [9], which places an unnecessary 
burden on healthcare resources and contributes to 
increasing costs. Significant barriers to clinically useful 
AI tools remain; these include model calibration, user 
trust, and data quality/heterogeneity [10]. 

The aim of this paper is to develop and evaluate a 
simple algorithm, using logistic regression, for early 
sepsis detection in adult ICU patients.  
 
2. Methods 

All analyses, other than the application of the 
competition-provided Python-based scoring tools, were 
performed using R 3.3.2 (R Foundation for Statistical 
Computing, Vienna, Austria). 

2.1. Dataset  

A labeled training set of time-series data from 40,336 
patients admitted to an ICU was provided by The Early 
Prediction of Sepsis from Clinical Data - the PhysioNet 
Computing in Cardiology Challenge 2019 [11]. 

The reference set included 2,933 cases with a positive 
sepsis label (7.3%), with a median onset time of 29 
(interquartile range [IQR] 7-73) hrs. The challenge 
includes a utility score to optimize against, which rewards 
classifiers that correctly predict sepsis between 12 hours 
before and 3 hours after clinical indication and penalizes 
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classifiers that fail to predict sepsis or predict sepsis more 
than 12 hours after. Hence, these requirements had to be 
taken into consideration to determine the optimal risk 
score threshold, instead of a sensitivity-/specificity-based 
threshold selection approach, for example. 

 
2.3. Training data pre-processing 

Significant missing values were encountered in the 
training dataset, which varied between 10-15% for some 
standard vital signs, to over 99% for some laboratory 
values. This was addressed by forward-filling of missing 
values, and, after calculating derivative variables, by 
substituting with either population means from non-sepsis 
patients, or means of the normal value ranges. 

Minor data cleaning, such as the removal of 
impossible inspired oxygen concentration values [FiO2], 
was necessary to avoid division-by-zero problems when 
normalizing values. 

2.3. Feature generation 

In addition to the raw values provided, three areas for 
feature generation were explored: 1) combinations of 
existing variables that were deemed clinically relevant, 2) 
transformations of candidate variables, and 3) evaluation 
of time-based changes.  

2.3.1 Derived variables of potential clinical interest 

Derived cardiac-based clinical features included: pulse 
pressure [PP] (systolic blood pressure [SBP]-diastolic 
blood pressure), estimated cardiac output [CO] (pulse 
pressure times heart rate [HR]), shock index (HR/SBP) 
and modified shock index [mSI] (HR/mean arterial blood 
pressure [MAP]) [12], cardiac output variation (PP/mean 
arterial pressure [MAP]) [13], and temperature-adjusted 
HR and respiratory rate [RR].  

For respiratory-based features, we transformed oxygen 
saturation based on the concept of virtual shunt (VS) [14], 
the difference between predicted (using temperature and 
HR) and measured respiratory rate [Resp], Carrico index 
(arterial oxygen partial pressure [O2Sat or SaO2] to FiO2 
ratio), oxygen delivery (combining hemoglobin, O2Sat, 
and CO or MAP). 

For laboratory test-derived variables, we calculated 
the number of laboratory measurements available at a 
given time, assuming that, as patient severity increased, 
additional investigations were performed for monitoring 
and therapy adjustments. Further, we derived 
urea/creatinine ratios, bicarbonate [HCO3-]/lactate ratios, 
calculated the anion gap (assuming normal sodium 
concentration), and computed linear combinations of urea 
and creatinine, HCO3- and lactate, chloride and pH as well 
as O2Sat- and MAP-adjusted hemoglobin. 

2.3.2 Variable transformations 

Firstly, we dichotomized all candidate features, 
whereby each observation was compared to reference 
normal values in Medscape (WebMD, New York, NY). 
Missing data were considered normal. The missingness 
status itself was also captured as a candidate variable. 

Next, we obtained z-scores using the mean and 
standard deviation of observations from patients who 
never had a positive sepsis label. We also included an 
absolute version of the z-score as a feature, as it might 
simply be the deviation from normal (not its direction) 
that needs to be assessed.  

Further, we created two different “penalty scores”: the 
absolute difference from the non-sepsis patients’ mean 
observations, set to zero if it fell within the normal range 
for the given variable; and using the absolute z-score, also 
set to zero if it fell within the normal range. 

Finally, we added the count of abnormal variables per 
organ system, specifically cardiac (HR, MAP, SBP, and 
troponin), respiratory (O2Sat, end-tidal carbon dioxide 
concentration, SaO2, HCO3-, lactate and the Carrico 
index), coagulation (fibrinogen, platelets, and partial 
thromboplastin time), and an infection category (white 
blood cell count and temperature). 

 
2.3.3 Time-based features 

Two simple change indices were created to investigate 
temporal relationships: 1) the first derivative for all 
values observed, and 2) the change from baseline 
observation. For the latter, we used the first observations 
after ICU admission as the reference. 

 
2.4. Feature selection 

For each of the 34 provided variables, and our derived 
features, we built logistic regression models using all 
variable transformations, as well as the values 
themselves. From these candidate variables, we selected 
those with a highly significant p-value (<0.01) for 
consideration in the sepsis identification algorithm. In 
addition, we included the number of laboratory values, 
and patient age and sex in the final regression model.  

2.5. Model performance evaluation 

A logistic regression model was trained and the initial 
risk score threshold identified using the Youden cut-off 
from the receiver operating characteristics (ROC) curve. 
Confidence intervals (CIs) for the area under the ROC 
curve (AUROC) were obtained through bootstrapping, 
but no other model cross-validation was performed. 
Model coefficients were then implemented into a risk 
scoring function. Additionally, model performance was 
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evaluated using the competition-provided scoring cost 
function. After obtaining the utility score based on the 
Youden threshold, additional optimization was performed 
by varying the probability cutoff over 70% (p=0.25-0.95) 
of the observed probability range, in order to gain the 
highest utility score for a given model.  

3. Results 

Our initial competition score entry had an AUROC of 
0.704, an area under the precision-recall curve (AUPRC) 
of 0.065, an accuracy of 0.781, and an official utility 
score of 0.200, when using a probability cutoff of 0.0155. 
This model used only commonly measured vital signs 
(HR, O2Sat, Temp, SBP, MAP, DBP, Resp), derived 
indices CO, PP, and mSI, and age and sex, with the 
variable itself, its first derivative, and absolute z-score, as 
features. Optimizing the cutoff resulted in a maximum 
utility score of 0.238 when using a cutoff of 0.022. 

When evaluating different variations of the z-score as 
the sole predictors, the absolute z-scores resulted in 
marginally superior model performance with an AUROC 
of 0.720, when compared to 0.717 for the standard z-
score, 0.680 for the penalty z-score, and 0.676 for the 
absolute penalty z-score. The absolute z-score was used 
for all future evaluations. 

Evaluating only commonly measured variables and 
retaining only statistically significant variables in the 
logistic regression (age, sex, O2Sat, Temp, SBP, Resp, 
CO, SI, VS, urea nitrogen, creatinine, glucose, potassium, 
hematocrit, hemoglobin, white blood cell counts, 
platelets, and urea/creatinine ratio), yielded an AUROC 
of 0.783. However, if missing values were substituted 
with the mean from non-sepsis patients, to allow the 
model to be applied to all samples, the AUROC 
decreased to 0.728, and if replacing them with the mean 
value of the normal range, the AUROC decreased to 
0.745. This is likely due to the imputation method being 
uninformative and the case mix of patients with missing 
data being very diverse. 

A model for each feature type, using only statistically 
significant variables as indicated in their respective 
logistic regression, along with age, sex, and number of 
laboratory values measured, had AUROCs of 0.730 for 
variable abnormality, 0.720 for variable absolute z-scores, 
0.674 for the first derivative of the variable, 0.576 for 
missingness of the commonly measured vital signs, and 
0.678 for deviations from baseline values.  

When combing all of these variables, except for the 
baseline deviation variables, in a single new model, it had 
an AUROC of 0.790 (95%CI 0.787-0.792) (see Fig. 1) 
during model building; when applying the 
`get_sepsis_score.R` function to the training data, it 
resulted in an AUROC of 0.774, an AUPRC of 0.078, an 
accuracy of 0.844, and a utility score of 0.301 for a 
probability cutoff of 0.024.  

The official utility score for the full test set was 0.249, 
with scores of 0.296, 0.268, and 0.007 for test sets A, B, 
and C, respectively. Official AUROCs were 0.747, 0.760, 
and 0.783; AUPRCs were 0.072, 0.067, and 0.088; and 
accuracies were 0.795, 0.889, and 0.815 respectively. 

 
Figure 1. Receiver operating characteristics curve of 
model performance (final attempt) on the training dataset. 
The AUC and 95% confidence interval (CI) for each 
approach are indicated in the bottom corner. ‘Abnormal’ 
indicates the use of variable normality, ‘abs Z-score’ the 
use of absolute variable z-scores, ‘Difference’ the use of 
the 1st derivatives, ‘Missing’ the use of vital signs 
missingness, and ‘Combined’ for a combination of all 
previously mentioned features. 
 
4. Discussion 

The goal of this model building study was to create a 
sepsis prediction model, which used only simple features 
and explainable machine learning approaches: 
specifically variable transformations and logistic 
regression. The lack of model performance gain when 
using missing vital signs features was surprising as we 
had assumed (incorrectly) that additional monitoring 
would be correlated with higher acuity, and thus higher 
sepsis probability. 

Despite the introduction of additional new features 
since our initial attempt, including clinically-relevant 
variable transformations and variable missingness 
features, we failed to make significant improvements in 
model performance. Our final performance, with 
AUROCs between 0.747 and 0.783, was considerably 
lower than that reported by Nemati et al., with AUROCs 
of 0.83-0.85 [15]. 
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4.1. Future work 

Scope for further investigation includes creation of 
additional features, particularly exploiting slower (longer 
time-scale) changes, the laboratory value missingness 
patterns, and the creation of additional interaction 
variables between physiological vital signs and laboratory 
values, with a particular emphasis on identifying organ 
system dysfunction. 

Next, more sophisticated approaches to address data 
missingness, such as multivariate imputation by chained 
equations (MICE), may yield better performance [16], 
[17], as the substituted values are likely closer to specific 
cases than the overall sample.  

In addition, the selection of variable thresholds to 
determine abnormality could be tailored to be more 
specific to the ICU setting, instead of using general 
population reference values. This is important as some of 
the interventions performed, such as mechanical 
ventilation, will mean some measured values will 
necessarily be different to those observed in otherwise 
healthy subjects. 

Finally, the use of more sophisticated machine learning 
approaches [18] might yield additional performance 
gains; these approaches may need to be explainable to 
maintain clinician trust in the derived predictions. 

 
4.2. Conclusion 

Our candidate score showed moderate performance 
with a AUROC between 0.747 and 0.783 against the test 
data, and a utility score of 0.249 for the full test set; it 
received a rank of 35/78 entries. Evaluation indicated 
significant potential for further optimization, including 
reduction of false-positives. Additional change-over-time 
features are expected to provide valuable scope for further 
investigation. 
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