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Abstract

Sepsis is a life-threatening condition that is caused by
infection, and is estimated to affects an estimated 1.7
million adults in the United States and contributes to
265,000 deaths annually. Identifying sepsis before it hap-
pens and treating it earlier leads to decreased mortal-
ity and decreased lengths of stay. As part of the Phys-
ioNet/Computing in Cardiology Challenge 2019, we devel-
oped an ensemble-based approach for the early detection
of sepsis in ICU patients.

Our final model predicted sepsis using the previous 24
hours of data, and consisted of a combination of two con-
volutional neural networks and a random forest trained on
different subsets of the data. In training our models, we ex-
perimented with random undersampling and cluster-based
undersampling as a means for addressing severe class im-
balance. On validation data, our final model achieved
a utility score of 0.432 on hospital A (AUROC: 0.794,
AUPRC: 0.101), 0.247 on hospital B (AUROC: 0.816,
AUPRC: 0.056), and a utility of 0.375 on combined data
from both hospitals (AUROC: 0.809, AUPRC: 0.089). On
the heldout test data, the model obtained a utility score of
0.266 and we received an official ranking of 31/79.

1. Introduction

Sepsis is a serious medical condition that occurs when
the body amounts an overwhelming immune response to
an infection. The immune response cascades into systemic
inflammation, causing restricted blood flow to organs and
tissues, ultimately leading to organ damage [1–3]. Sepsis
can happen to anyone, although it is more common in peo-
ple with serious medical conditions and comorbidities [4].
Consequently, sepsis is a major concern for hospital inpa-
tients, particularly since untimely treatment of sepsis can
lead to an increased length of stay, morbidity, and mortal-
ity [5].

In the United States, sepsis affects an estimated 1.7 mil-
lion adults and contributes to 265,000 deaths annually [6].
In 2013, sepsis-related hospital costs in the US totaled
$24 billion, representing 6.3% of the total hospital costs

[7]. These cost estimates have consistently increased in
the last two decades, with recent estimates reporting a 5-
fold increase in inflation-adjusted cost spending compared
to 1997 [8].

Timely treatment of sepsis for hospital inpatients is
important for patient prognosis, however detection of
sepsis is difficult as its early presentation can resemble
many other clinical conditions. As part of the Phys-
ioNet/Computing in Cardiology 2019 Challenge, we used
electronic health records data from over 40,000 patients to
build models for identifying sepsis before its onset. In this
paper, we present our approach for detecting sepsis and
discuss a method for informed subsampling in the pres-
ence of severe class imbalance.

Imbalanced data is a ubiquitous problem in healthcare
data. Approaches for dealing with class imbalance involve
weighting the loss function, undersampling the majority
class, or oversampling the minority class (e.g., SMOTE
[9]). We sought to explore this further and focus on un-
dersampling. Here, we present our approach for detecting
sepsis using clinical data from the PhysioNet/Computing
in Cardiology Challenge 2019 [10]. Our final model to the
challenge consisted in an ensemble-based approach trained
using random- and cluster-based undersampling.

2. Methods

2.1. Data and pre-processing

The challenge dataset consisted of time-invariant demo-
graphic features (e.g., age, gender), and vital signs (e.g.,
heart rate, temperature) and laboratory values (e.g., cal-
cium, lactic acid) sampled at an hourly level from two dif-
ferent hospitals (hospital A and hospital B) [10].

We prepared the data into time windows, as shown in
Figure 1. The time-dependent features had varying degrees
of missingness, ranging from 13% to 100%. For each pa-
tient, missing values were imputed by applying last obser-
vation carried forward. Where that was not possible (i.e.,
missing values that occur before the first observation in
the visit), the missing value was filled with a value of -1.
Additionally, we created indicator variables for each fea-
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Figure 1. Data preparation pipeline. For each patient, we pre-processed the data with ‘last observation carried forward’
and filled remaining missing values with -1. We also created indicator variables for each feature, to identify if a feature was
measured or imputed in that time interval. Finally, for each row of data, we create windows consisting of the previous 24
hours of data. Each data point consists of a window of dimension (window size = 24) by (# features = 74).

ture, denoting whether the value was observed or imputed
within each hour (i.e., a 1 if the value was observed and a
0 if it was imputed). Finally, we created running windows
of data (with window size = 24), with earlier rows filled in
with 0’s (i.e., each data point includes up to the previous
24 hours of the patient’s visit information).

2.2. Unsupervised clustering and subsam-
pling

To explore the heterogeneity of the hospital inpatient
population, we applied K-means clustering to the set of
demographic and physiological features of all patients.
Since K-means is based on Euclidean distances and dis-
tance metrics may not be meaningful in high-dimensional
space [11], we applied Principal Components Analysis to
the original features to obtain a lower dimensional repre-
sentation of the data. We applied K-means clustering (with
k = 5) to the first two principal components (PC1 and PC2,
representing 70% of the total variance) for each observa-
tion. Figure 2 visualizes the distribution of the five clusters
in the 2-dimensional space of PC1 and PC2. The clusters
were then used to inform sampling.

At a patient-level, sepsis occured in 8.8 % of patients in
hospital A and 5.7 % of patients in hospital B (combined:
7.3 %). When we accounted for the temporality of the data
and looked at the window-level, sepsis occurred in 2.2 % of
windows in hospital A and 1.4 % of windows in hospital B
(combined: 1.8 %). Given the large size of the dataset and
the severe class imbalance in the outcome, we subsampled
the majority class to increase model training speed and to
improve model representation for the minority class.

After merging the datasets from hospital A and hospital
B, we then split the combined data into training and val-
idation data using an 80/20 split. We used two different
undersampling techniques and created various subsets of
the training data.

Figure 2. Cluster visualization in Principal Component
space. We applied Principal Component Analysis (PCA)
to the data and then clustered the top two components (PC1
and PC2) - accounting for 70% of the total variance - using
k-means clustering (k = 5).

• Random sampling: From the non-septic windows of
the training data, we sampled at random.
• Cluster-based sampling: Each non-septic window of
the training data was assigned to a cluster based on our k-
means cluster model trained on the first and second princi-
pal components. We sampled randomly and with replace-
ment from each cluster, until we had an equal number of
data points from each cluster. Our intuition was that win-
dows within the same cluster would be similar to each
other. As such, when undersampling, we wanted to ensure
we were sampling in a way that gave an adequate repre-
sentation of the majority class.

All data from the minority class (i.e., windows that ex-
perience sepsis) were retained. We tested sampling ratios
of 1:2, 1:5, 1:10 and 1:20. For example, for a ratio of 1:2,
we ensured that there were twice as many windows without
sepsis (majority class) than windows with sepsis (minority
class).
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Validation Test
Dataset AUROC AUPRC Acc. F Util. AUROC AUPRC Acc. F Util.

A 0.794 0.101 0.761 0.126 0.432 0.790 0.094 0.774 0.113 0.378
B 0.816 0.056 0.863 0.094 0.247 0.807 0.075 0.853 0.104 0.315
C — — — — — 0.764 0.057 0.694 0.037 -0.318

Combined 0.809 0.089 0.772 0.105 0.375 — — — — 0.266

Table 1. Validation results results. We report the area under the receiver-operator curve (AUROC), area under the
precision-recall curve (AUPRC), accuracy (Acc.), F-measure (F ), and utility score (Util.). Metrics are provided on the
validation data and test data for the individual hospitals and the combined hospitals. Data from hospital C was not provided
as training data and thus we have no validation results for it.

2.3. Models

We trained convolutional neural network and random
forest models on the different subsets of the training data
(i.e., random sampling vs “cluster”-based sampling of ma-
jority class; different sampling ratios) as described above.
We then ensembled the different CNN and RF models to-
gether through logistic regression.

Convolutional Neural Network (CNN): We imple-
mented a convolutional neural network (CNN) in keras
[12]. The CNN architecture consisted of up to three two-
dimensional convolution layers (we experimented with 1,
2, and 3 layers) with kernel size 3×3 and ReLU activation
. Max pooling and dropout were applied after the convolu-
tion layer(s) with one fully connected layer for the output.
We trained the model with the Adam optimizer (using de-
fault parameters) and early stopping based on the valida-
tion loss. The CNN took as input the 24-hour window of
pre-processed features (i.e., dimension of 24× 74).

Random Forest (RF): The random forest consisted of
100 estimators and the scikit-learn default param-
eters [13]. The RF took as input a flattened representa-
tion of the 24-hour window (i.e., a vector of dimension
24 · 74 = 1, 776).

Ensemble model - logistic regression (LR): The best
CNN and RF models were combined using a logistic re-
gression model. The output probabilities of each model
were used as input features to the ensemble. We ex-
perimented with different combinations of RF and CNN
trained on different subsets (varying in sampling approach
and ratios). Our final submitted model was a logistic re-
gression ensemble of the following:

1. RF trained on a subset of the training data, sampled ran-
domly and with a 1:2 ratio
2. CNN with 1 convolution layer trained on a subset of the
training data, sampled randomly and with a 1:2 ratio.
3. CNN with 1 convolution layer trained on a subset of the
training data, sampled based on K-means clusters and with
a 1:2 ratio.

3. Results

We used an 80/20 train/validation split on the data and
report our ensemble model results in Table 1. Our model
achieved the best utility score with data from hospital A,
but had better AUROC and AUPRC with data from hos-
pital B. On the heldout evaluation data, the ensemble
model achieved a utility score of 0.266 (0.378 on hospi-
tal A, 0.315 on hospital B, and -0.318 on hospital C).

When building our final ensemble model, we explored
different undersampling methods. For each method and
sampling ratio, we sampled the training data 10 times. We
report results of the 1-layer CNN and RF in Table 2. The
results consist of the AUROC, AUPRC, and utility scores
on the combined validation data averaged over the ten sub-
sets. Generally, using a ratio of 1:2 achieved better result
and the random undersampling performed better than the
cluster-based sampling in all scenarios.

4. Discussion and Conclusions

We present our ensemble model for the Phys-
ioNet/Computing in Cardiology 2019 challenge. Our fi-
nal model consisted in an ensemble of a random forest
and two convolutional neural networks trained on different
subsets of the data. In our experiments, we tried random
undersampling and a cluster-based sampling approach, to
address the class imbalance.

We hoped that using cluster-based sampling would bet-
ter capture the population from the majority class. In this
set of experiments, using cluster-based sampling alone did
not yield the best results. However, we found using it
in combination with other models helped in the final en-
semble. Our cluster-based sampling was fairly simple -
each data point was assigned to a cluster. A better ap-
proach would be to take into account cluster distance, since
our current undersampling technique did not account for
within-cluster differences. In the future, we would like to
explore methods that better leverage the distance informa-
tion obtained by unsupervised clustering.

Furthermore, our current approach was limited in that
we only used 24 hours of data to make a prediction. We
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CNN RF
Sampling Ratio AUROC AUPRC Utility AUROC AUPRC Utility

Random

1:20 0.790 (0.005) 0.079 (0.003) 0.352 (0.009) 0.753 (0.004) 0.064 (0.001) 0.238 (0.005)
1:10 0.787 (0.007) 0.078 (0.003) 0.346 (0.014) 0.751 (0.004) 0.064 (0.001) 0.267 (0.005)
1:5 0.797 (0.007) 0.080 (0.005) 0.360 (0.011) 0.747 (0.004) 0.064 (0.001) 0.261 (0.006)
1:2 0.797 (0.009) 0.080 (0.005) 0.355 (0.011) 0.743 (0.002) 0.067 ( 0.001) 0.271 (0.004)

Cluster

1:20 0.779 (0.005) 0.077 (0.004) 0.339 (0.009) 0.743 (0.006) 0.063 (0.001) 0.254 (0.005)
1:10 0.784 (0.010) 0.078 (0.004) 0.343 (0.015) 0.742 (0.004) 0.063 (0.001) 0.246 (0.006)
1:5 0.783 (0.008) 0.074 (0.004) 0.340 (0.014) 0.734 (0.002) 0.063 (0.002) 0.249 (0.008)
1:2 0.786 (0.007) 0.078 (0.003) 0.345 (0.012) 0.732 (0.001) 0.064 (0.001) 0.225 (0.005)

Table 2. Experiments across sampling techniques and with different ratios. The ratios correspond to the prevalence of
non-septic 24-hour windows of data to septic 24-hour windows of data. For each sampling technique and sampling ratio,
we sample 10 times and report the averaged AUROC, AUPRC, and utility scores (with standard deviation in parentheses).

reasoned that measures from within a day would be suffi-
cient to capture enough information.
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