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Abstract 

Background: Sleep arousal is basically described as a 

shift in EEG activity in frequencies > 16 Hz for a 

duration of > 3 sec (by the American Sleep Disorders 

Association – ASDA). The number of these arousals 

during sleep is a reflection of sleep quality. In 

accordance with the PhysioNet/CinC Challenge 2018, we 

present a method for automatic detection of arousals in 

polysomnographic recordings. 

Method: Each file in the training dataset (N=994) has 

defined “Target Arousal Regions” (TAR, median length 

33 seconds); however, arousals were usually located in 

the right half of these TARs. We built a method detecting 

EEG frequency shift to locate arousals inside ARs: 

envelograms (14-20, 16-25 and 20-40 Hz) were inspected 

in a 3-sec floating window for an increase against a 10-

sec background. We then extracted 133,573 blocks with 

such a shift from TARs (N=38,628) as well as outside 

TARs (N=94,945). We extracted 23 features from these 

blocks (how many EEG channels/frequency bands EEG 

frequency shift; heart rate before/during arousal; airflow 

and EMG changes) and trained a bagged tree ensemble 

model (70/30 % hold-out). 

Results: The method showed AUPRC 0.27 on a 

training set and AUPRC 0.20 on a testing set (N=989). 

 

1. Introduction 

Sleep arousals disturb sleep and, therefore, affect sleep 

quality. Sleep arousals were defined by the American 

Sleep Disorders Association (ASDA) in 1992 as a shift in 

EEG activity in frequencies above 16 Hz for more than 3 

seconds [1]. Multiple other rules were defined, for 

example that at least 10 seconds of continuous sleep must 

precede such an EEG frequency shift to score this as an 

arousal. General rules for scoring arousals were further 

improved by the American Academy of Sleep Medicine 

(AASM) [2]. 

According to the AASM guidelines, arousals are 

usually scored in a 30-second window. Because an 

arousal must be preceded by at least 10 seconds of 

continuous sleep, this setup allows a wide baseline area 

for consideration of EEG frequency shift. However, how 

intense such a frequency shift must be or how long this 

baseline area should be are not exactly defined. 

 

The PhysioNet Challenge 2018 [3] was aimed at 

detection of target arousal regions (TAR). A TAR, 

according to the definition of the organizers, should be an 

arousal extended by 2 seconds prior to its start and 

prolonged by 2 or 10 seconds (depending on the kind of 

arousal). In this paper, we propose an automated method 

to recognize TARs in polysomnographic data. 

 

2. Method 

 
 

Figure 1. Method flowchart. EEG, EMG, ECG and 

airflow signals are loaded (A); envelograms are prepared 

from EEG signals (B); QRS complexes are detected in 

ECG (C). Hypothetical arousals (HA) are detected in 

places of EEG frequency shift (D). For each HA, features 

are extracted and processed with a bagged tree ensemble 

(E-G). HA is extended to “Target Arousal Region” (H), 

modified by time (I) and added to output vector(J). 



We used Matlab® 2016b with the Machine Learning 

and Statistics Toolbox and Signal Processing Toolbox. 

The used public data consisted of a scored training 

dataset (N=994) and non-scored testing dataset (N=989) 

of whole-night polysomnographic data (fs=200 Hz). Both 

datasets were supplied by the Challenge organizers. 

Datasets contained 7x EEG channels, 1x EMG channel, 

1x ECG channel, respiratory curve and SaO2 saturation 

curve. 

The method flowchart is shown in Fig. 1. Since the 

elementary condition for sleep arousals is a shift in EEG 

activity, we decided to find such hypothetical arousals 

(HA) using EEG signals only. We then trained a bagged-

tree-ensemble model computing arousal validity; this 

bagged tree ensemble used additional information from 

EMG, ECG and airflow. We extended arousal borders for 

compliance with the PhysioNet Challenge 2018 and, 

finally, the probability received from the bagged tree 

ensemble was modified by the general probability of an 

arousal at a specified time of sleep. The method output is 

a vector of the same length as the input data; this vector 

indicates the probability of a TAR. 

 

2.1. Data pre-processing 

Each EEG channel (N=7, Fig. 2A) was transformed 

into 3 envelograms (14-20 Hz, 16-25 Hz and 20-40 Hz) 

using Fast Fourier and Hilbert transformations. All 

envelograms (N=21) were down-sampled to 50 Hz. Next,  

for each envelogram we computed continuous change in 

EEG amplitudes comparing a 3-s window to a 10-s 

window of preceding signal (step 0.5 s). Continuous 

changes higher than 1.1 were found; this threshold is 

arbitrary since no specific value was found in the 

literature. If such continuous change lasted at least 3 

seconds, it was accepted as an arousal-compliant EEG 

shift (ACES, Fig. 2B). Finally, for each 0.5-second 

window we evaluated the sum of registered ACES from 

all envelograms (each ACES was multiplied by its 

duration). This sum creates a single curve with maxima 

pointing to hypothetical arousal (Fig. 2C). 

 

2.2. Used features 

We detected these HAs in TARs (N=38,628) in areas 

scored as 1. We also detected HAs outside TARs (Non-

TARs, N=94,945) in areas scored as 0. A total of 23 

features (Tab. 1) were extracted for each HA, leading to 

an unbalanced training dataset of 133,573 cases. Since 11 

features were extracted from the EEG signal, we also 

extracted 7 features from ECG activity as heart rate or its 

changes; the rest were based on EMG and airflow signals. 

For QRS detection, we used a method designed for 1-lead 

Holter-ECG processing [4]. 

 

2.3. Model training 

We trained a bagged tree ensemble model leaving 

30 % of training samples for testing. The receiver-

operator curve showed AUC 0.95 with values of 

 
 

Figure 2. Method to find hypothetical arousals using information related to frequency shift in EEG. The EEG signal 

(A) was transformed into envelograms. Increases in EEG amplitude longer than 3 seconds were examined in three 

frequency bands (B). Next, this information is summed together from all envelograms (21) and summed together 

using increase duration as a weight (C). EMG (D) and Airflow channels are shown for convenience. 



sensitivity and specificity of 0.79 and 0.94, respectively 

and accuracy of 90 %. However, it should be noted that 

this metric strictly describes ability of the classifier to 

identify real arousals in HAs; it is not the overall method 

performance. If any of the input features could not be 

computed, the HA was excluded from model preparation. 

 

Table 1. List of extracted features. ACES: Arousal-

Compliant EEG Shift; EEG: electroencephalogram; ECG: 

electrocardiogram; EMG: electromyogram; Breath – 

signal describing airflow. 

 

No. Feature description  Source 

1 Max. weighted ACES sum  EEG 

2 Number of ACES EEG 

3 Number of channels with ACES EEG 

4 Heart rate at ACES start ECG 

5 First derivative of #4 ECG 

6 Heart rate at ACES end ECG 

7 First derivative of #6  ECG 

8 Heart rate 10 s before ACES ECG 

9 Heart rate 10 s after ACES ECG 

10 Heart rate amplitude during ACES ECG 

11 Heart rate standard deviation ECG 

12 Heart rate std. 10 s before ACES ECG 

13 Ratio of std. deviation of heart rate 

10 s before and 2 s after ACES 

maxima 

ECG 

14 Mean airflow amplitude during 

ACES  

Breath 

15 Mean airflow amplitude in 10-sec 

window before ACES start  

Breath 

16 Ratio of features #14/#15 Breath 

17 Mean amplitude of Chin-Chin EMG 

signal during ACES 

EMG 

18 Mean amplitude of Chin-Chin 

signal 10 seconds before ACES 

beginning 

EMG 

19 Ratio of features #17/#18 EMG 

20 Maximal ACES length EEG 

21 Number of channels with ACES in 

band 14-20 Hz 

EEG 

22 Number of channels with ACES in 

band 16-25 Hz 

EEG 

23 Number of channels with ACES in 

band 20-40 Hz 

EEG 

 

 

2.4. Computing target arousal regions 

At this stage, the presented method was able to find 

and compute the probability of sleep arousals. The task of 

the Challenge was, however, to find TARs. Measured in 

the training dataset, the TARs duration median was 33.2 

s; the median offset of TAR start measured to the sleep 

arousal centre was 23.8 s and the median offset to TAR 

end was 8.6 s. Because we did not find any other logical 

link between TAR borders and sleep arousals, we 

extended each arousal centre to the left and right using 

these median values. Finally, the probability of each TAR 

was multiplied by the overall squared probability of sleep 

arousal (computed in 10-minute steps, Fig. 3). 

 

 
Figure 3. Squared probability of sleep arousal during 

sleep. These values multiplied the probability of arousal 

computed by the bagged tree ensemble. 

 

3. Results 

The results were evaluated on remote PhysioNet 

servers using a hidden dataset (Tab. 2). Performance in 

the Challenge 2018 was evaluated using area under 

precision-recall curve (AUPRC). During the evaluation 

on remote servers, it consumed (average) 3.93 % of the 

quoted running time. 

 

Table 2. Method performance on training and testing 

datasets. AUROC – area under receiver operating 

characteristics; AUPRC – area under precision-recall 

curve. 

 

 Training 

(N=998) 

Testing 

(N=988) 

AUROC 0.81 - 

AUPRC 0.27 0.20 

 

 

4. Discussion 

The presented method implements just 23 features, for 

which reason it could, from the perspective of machine 

learning, be recognized as light-weight (this could also be 

measured by the amount of computing time shown in the 

section Results). An elementary rule requiring a shift in 

EEG frequency led us to a simple way of predicting areas 

of hypothetical arousals and we were quite successful in 

recognizing real arousals in these areas (AUC-ROC 0.95). 

On the other hand, the results computed when identifying 



TARs on the training and testing set in Tab. 2 showed 

weaker AUROC performance indicating that our 

approach to recognizing HAs is not as powerful as 

classification of real arousals in HAs.  

Moreover, we found it difficult to associate real 

arousals and TARs (and finding TARs was the goal of the 

challenge). Since the term “target arousal region” may be 

hard to find in the literature related to sleep arousals, 

definitions in the Challenge state that a TAR should 

specifically overlap sleep arousal. This overlap should be 

2 seconds for arousal beginning and 2 or 10 seconds for 

arousal end (different for respiratory effort related 

arousals – RERAs and for non-respiratory effort related 

arousals – non-RERAs). We showed that the median 

length of TAR is 33 seconds (derived from the training 

set). This would mean that median EEG arousal length 

should not be shorter than 21 seconds which seems 

unlikely. From our observations, TARs may be associated 

with the position of the screen used during arousal 

scoring; this would be in accordance with AASM 

guidelines suggesting that arousals should be scored using 

a 30-second window on the screen. 

We did not apply additional rules for scoring arousals. 

For example, we did not use a rule stating that a new 

arousal should not be scored if the distance from the 

previous one is shorter than 10 seconds [1]. Also, we did 

not distinguish between RERAs and non-RERAs; non-

RERA arousals used different offsets for TARs. This 

should be reconsidered because 99.6% of target arousals 

were RERA (unfortunately, we found this information 

after the end of the official phase of the challenge). The 

presented method did not use the SaO2 channel showing 

oxygen saturation in the blood. The reason for this was 

that we considered this information too noisy. On the 

other hand, as shown on the sample entry prepared by the 

Challenge organizers (and also considering the fact that 

most arousals were RERA), this information could be 

successfully used for recognizing target arousals.  

Reconsidering these missing points in the future could 

improve the results of the presented method. 

 

5. Conclusion 

We presented a method for automated evaluation of 

sleep arousals in polysomnographic studies. Although it 

showed high performance in finding sleep arousals in 

areas preselected using a shift in EEG frequencies, it 

achieved below-average performance when finding 

Target Arousal Regions (which was the task of the 

PhysioNet Challenge 2018).  
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