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Abstract 

In this study, we developed a system that identifies the 

respiratory effort related arousals (RERA) and the non-

RERA, non-apnoea arousals by processing four signals of 

the chin EMG signal, two channels of EEG signals (C4-

M1 and C3-M2) and the oximetry signal. The 2 EEG 

signals were processed identically. Firstly, preprocessing 

was applied to remove the baseline wander, unwanted low 

frequency components and the abrupt changes. Then, the 

EEG signals were divided into non-overlapping epochs 

and a power spectral decomposition was calculated 

resulting in 5 PSD features per epoch. The Chin EMG 

signals were processed in the same fashion and resulted in 

5 PSD features. The artefact signal of the SaO2 signal 

was removed and the square root of the standard 

deviation of the signal was calculated. The features were 

combined into a 16-element epoch. Following this, 

features from surrounding epochs were combined with the 

current epoch. We compared the performance of 

combining features from one to four epochs either side of 

an epoch. The 10-fold cross validation results of three 

classifiers including linear discriminant analysis (LDA), 

logistic regression (LR) and single hidden layer feed-

forward neural networks (SHLN). The performance of our 

best system was an AUC 0.82 and an AUPRC of 0.24 

using the 10 hidden units feed-forward neural network. 

 

 

1. Introduction 

Sleep is vital for physical and mental health affecting 

neurocognitive, physiological and psychopathology  

functions and performance [1], [2]. Arousals are linked 

with sleep and interrupts the sleep states, forming a 

sleep/arousal loop  [1]. Spontaneous arousals are part of a 

normal sleep/wake cycle [3], [4].  There are also different 

clinical conditions causing sleep fragmentation and 

arousals including respiratory sleep disorders and 

nocturnal myoclonus such as snoring, sleep apnoea 

(obstructive, central and mixed apnoea), hypopnoea, and 

periodic leg movement [1], [3], [4]. The interruptions in 

sleep and respiratory effort arousals may lead to serious 

health issues such as neurocognitive disorders, mood and 

mental conditions and cardiovascular disease [5]. 

Sleep staging and detecting arousals can be achieved 

using different physiological signals by extracting time 

and frequency domain information from the recorded 

signals during sleep [6]. A commonly used definition of 

arousal is provided by the American Academy of Sleep 

Medicine (AASM) indicating an abrupt minimum of 3-

second increase in EEG frequency [7], [8]. Different 

algorithms have been studied in the literature for 

automatic sleep staging and detection of arousals using a 

variety of signals including EEG, EMG, and 

electrooculogram (EOG) [3], [6], [8]–[16]. Different 

features and methods were used including temporal and 

statistical features, time-frequency features, spectral 

decomposition of the EEG signals using a decision tree 

[9], and wavelet transform of the EEG data [3], [13]. The 

studies mostly proposed automated sleep scoring and 

detected arousals without discriminating different types of 

arousals including RERA, apnoea and non-apnoea types 

[3], [6], [8]–[16]. 

This study aims to detect the respiratory effort related 

arousals (RERA) and the non-RERA, non-apnoea arousals 

[17]. In this paper, we consider different signal processing 

methods to identify the two types of arousals using 

overnight recorded physiological signals including 

electroencephalography (EEG), chin electromyography 

(EMG), and oxygen saturation (SaO2). 

 

2. Input Data 

The dataset was provided by the PhysioNet/ 

Computing in Cardiology Challenge 2018 [17]. It was 

comprised of overnight polysomnographic (PSG) studies 

of 994 recordings as training set and 989 hidden test set 

data from 1985 subjects at the Massachusetts General 

Hospital (MGH) labs. There are nine signals including 

electrocardiogram (ECG), electroencephalogram (EEG), 

electrooculogram (EOG), electromyogram (EMG), and 

oxygen saturation (SaO2). The signals were measured in 

microvolts and sampled at 200 Hz, except SaO2 which 

was resampled to 200 Hz and measured in percentage. The 

MGH clinical staff annotated the sleep stages using the 

AASM manual for sleep scoring. The sleep scoring was 

provided for 30 second epochs with labels including 

wakefulness, stage 1, stage 2, stage 3, rapid eye movement 

(REM) and undefined. Also, the arousals were annotated 

by MGH sleep technologists into labels of spontaneous 
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arousals, RERA, bruxisms, hypoventilations, hypopnoeas, 

apnoeas (obstructive, central and mixed), vocalisations, 

snores, periodic leg movement, Cheyne-Stokes breathing 

and partial airway obstructions. The aim of the challenge 

was to identify the target arousals including RERA 

arousals and non-RERA, non-apnoea arousals. For the 

labelling the targets associated with a RERA arousals, the 

target began 2 seconds before the arousal up to 10 seconds 

after it ended. For the non-RERA, non-apnoea arousals, 

the targets began 2 seconds before a non-RERA arousal, 

up to 2 seconds after it ended. It should be noted that the 

apnoea or hypopnoea arousals that occurred within 10 

seconds of a period of wakefulness were not scored. The 

target arousals were labelled as “1”. There were also 

targets associated apnoea-arousals that were marked as “-

1”, which were not considered for scoring.  

  

3. Methods 

Figure 1 depicts our automatic arousal annotator. It 

processes the chin EMG signal, two channels of EEG 

signals (C4-M1 and C3-M2) and the oximetry signal. It 

outputs an estimated probability of an arousal occurrence 

every 1/200th of a second. Each stage will be discussed 

below. 

3.1. Mapping annotations to epochs 

We used an epoch-based process system as all of our 

features required a time window of data in order to find an 

estimated value. The arousal annotations were event based 

and provided as a signal sampled at 200Hz. The event-

based annotations were first mapped to our epochs using 

the following rules:  

• If all event-based annotations were non-arousal for 

an epoch then epoch was labelled as ‘non-arousal’,  

• if the duration of non-apnoea arousals in the epoch 

was greater than the apnoea arousals, the epoch was 

labelled as ‘non-apnoea arousal’,  

• otherwise the epoch was labelled as ‘apnoea 

arousal’. 

3.2.  EEG and EMG signals  

One of the conditions of the 1992 American Sleep 

Disorders Academy (ASDA) for identifying an arousal [8] 

is an abrupt shift in EEG signal which may include theta, 

alpha and/or frequencies above 16Hz but not spindles. The 

ASDA recommends using central or occipital EEG 

channels. Inspired by these scoring rules, we identified 

features that captured the power in the similar frequency 

bands and used these values as inputs to our classifier.  

The 2 channels of central EEG signal (C4-M1, C3-

M2) were processed in an identical fashion. Firstly, the 

signals were high-pass filtered with a median filter of 

width 0.25 seconds to produce a high-pass filtered signal. 

This removed baseline wander and unwanted low 

frequency components. Visually inspections of the high-

pass signals revealed that there were many sections when 

signal abruptly changed. To correct these sections, we 

differentiated the high-pass filtered signal and where the 

absolute value of the differentiated signal exceeded a 

threshold, the high-pass filtered signal was replaced with a 

zero value. A threshold of 100 was found to provide 

satisfactory performance. These steps had the effect of 

replacing the sudden changes in the signal with zeroes. 

After these processing steps, the EEG signals were 

divided into non-overlapping epochs. A power spectral 

decomposition (Welch’s periodogram method [18]) the 

EEG signal at 1 Hz resolution was calculated. Frequency 

bins were then combined as follows, 2-4Hz, 5-8Hz, 9-

12Hz, 13-16Hz, and 17-32Hz. The values in the combined 

bins were then divided by the sum of the PSD for 2-32Hz 

and after applying a log transform these values used for 

features. Thus, for each EEG signal there were 5 features 

per epoch.  

The Chin EMG signal was processed in an identical 

fashion to the EEG signals to yield 5 features per epoch. 

3.3. SaO2 signals 

Artefact signal in the SaO2 signal was identified by 

finding all samples with 0 value. These samples were 

replaced with not a number (NaN) tag. A single feature 
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Figure 1. The block diagram of the proposed automatic arousal detection system. 
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was calculated for each epoch calculated as the square 

root of the standard deviation of the non-NaN SaO2 

values in the epoch. 

3.3. Feature combiner 

The features from each signal were combined into a 

single vector of 16 elements per epoch. The 2 EEG and the 

EMG signals resulted in 5 features per epoch per signal. The 

SaO2 signal resulted in 1 feature per epoch. 

3.4. Epoch combiner 

Adjacent arousal classifications are not independent. 

Hence, using information in surrounding epochs to classify 

an epoch, results in successful classification. A boost in the 

performance of a classification system was achieved by 

combining features from surrounding epochs with the 

current epoch. We tried combining features up to four 

epochs either side of an epoch. 

3.5. Classifier 

Before applying the data to the classifier training 

module, all epochs that were associated with apnoea-

arousals were removed from the analysis. Three types of 

classifiers were trialed - linear discriminant analysis (LDA) 

[19], logistic regression [19] and single hidden layer feed-

forward neural networks (FFNN) [19] with varying number 

of hidden units. All classifiers provide a probability estimate 

for each epoch of the occurrence of a non-apnoea arousal. 

The FFNN used a ‘tanh’ transfer function for the hidden 

units and a softmax output stage. A cross-entropy cost 

function was used. Training was performed iteratively using 

an extended Levenberg Marquardt algorithm for cross-

entropy cost functions [20]. Twenty percent of the available 

training data was set aside and used as a validation set. 

During training, the performance of the system was 

monitored on the validation set and the training algorithm 

finished when there was no improvement on the validation 

set for 10 iterations. For this dataset, our training method 

arrived at a solution in 10-40 iterations. 

3.6. Arousal annotator 

The outputs of the classifier were probability estimates 

of an arousal occurring during the epochs. To map this to 

a sequence equivalent to the original arousal annotation 

(200Hz sampling) we up-sampled the epoch-probabilities 

to a 200 Hz signal using a first order hold filter. 

 

3.7. Performance estimation 

Performance was estimated on the 994 records of the 

training set using 10-fold cross validation. Each fold had 

either 99 or 100 records, with 9 folds used for training and 

1-fold used for testing. This was repeated 10 times to use 

all recordings as the test set in 10 iterations.  

3.4. Performance measures 

Performance was measured using the area under the 

receiver operator curve (AUROC) [21] and the area under 

the precision-recall curve (AUPRC) [22]. 

 

4. Results 

We used a 15 second epoch as the basic signal window 

for our processing. 

Table 1 shows the cross-validation performance of the 

system on the training set using an LDA classifier and 

Table 1. Results for different levels of feature combining using an LDA classifier 

                  Number of Epochs combined 

  ± 0 ± 1  ± 2 ±3 ±4 

AUROC 0.672 0.747 0.765 0.772 0.776 

AUPRC 0.101 0.150 0.163 0.169 0.172 

 

Table 2. Performance results for different classifiers using feature combining set at ± 4 epochs 

 Single Hidden Layer FFNN 

 LDA Logistic 3HUs 6HUs 10 HUs 20 HUs 

AUROC 0.776 0.779 0.806 0.815 0.819 0.819 

AUPRC 0.172 0.173 0.210 0.229 0.237 0.235 

 

Page 3



varying the level of feature combining. Performance was 

maximised when features were combined using ± 4 

epochs   

Table 2 shows the cross-validation performance of the 

system on training set using different classifiers 

processing feature combining using ± 4 epochs.  

5. Discussion and Conclusion 

Table 1 shows that the highest performance for an 

LDA classifier was obtained when the features of every 8 

adjacent epochs (4 epochs from either side) were 

combined. As this result was obtained at the maximum 

range of combining trialed, wider epoch combining may 

yielded greater performance. 

The best performing feature-extraction system as 

identified in Table 1 was then used as input to five other 

classifiers including logistic regression and single hidden 

layer feed forward neural network with 3, 6, 10 and 20 

hidden layer units. The two linear systems (LDA and 

logistic regression) returned very similar performance 

with an AUROC of 0.78 and an AUPRC of 0.17. 

Introducing a non-linearity into the classifier benefitted 

the system. The performance of our best system was an 

AUC 0.82 and an AUPRC of 0.24 and was achieved with 

a FFNN using 10 non-linear hidden units.  

Processing other signals of the PSG and combining the 

features may enhance the results. Also, the performance of 

other machine learning algorithms (e.g. support vector 

machines) may improve the algorithm performance. 
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