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Abstract

An approach is presented to classify ECG signals as
normal, atrial fibrillation, other arrhythmia, or noisy in
the context of the Physionet/CinC challenge 2017. The
presented approach is a two-stage one, where first noisy
recordings are detected based on generic features in the
data. Then in the second stage known indices for atrial
fibrillation are used as features. For both stages an ensem-
ble model with decision trees is used, fitted with RUSBoost
to account for the class imbalance in the dataset. With
this approach an overall F1 score of 0.75 is obtained. The
method achieves an accurate classification of AF signals,
but the misclassification for other arrhythmia is relatively
high. Suggestions are also presented on how ECG wave
morphologies could be taken into account by using deep
learning to further improve the classification.

1. Introduction

Atrial fibrillation (AF) is a disease with a strongly in-
creasing prevalence. Currently 2% of people in Europe
suffer from it and it is expected that annually there will
be 120,000 to 215,000 new cases [1]. Though AF by it-
self is often not life threatening and might even be asymp-
tomatic, it can promote other conditions like cardiomyopa-
thy and stroke, and as a result is associated with increased
risk of mortality. With an aging population, age-related AF
is becoming a major socio-economic burden for healthcare
systems. Early detection of AF is therefore paramount to
achieve a risk reduction for stroke and AF-related cardio-
vascular diseases [2]. However, this remains problematic,
because AF may be episodic and thus difficult to detect by
sporadic monitoring of the cardiac activity in the hospi-
tal or specialised centres. Moreover, there is currently no
standard available to distinguish between AF and other ar-
rhythmias and the aim of the 2017 PhysioNet/CinC Chal-
lenge [3] is to distinguish AF from normal sinus rhythm
(NSR) and other arrhythmias in single lead ECG record-
ings.

This study proposes an ensemble learning method to

distinguish AF from both NSR and other arrhythmias. This
is achieved by using state-of-the-art features for AF. More-
over, some considerations are expressed on the use of deep
learning techniques to solve this challenge.

2. Methods

2.1. Data

In the 2017 PhysioNet/CinC Challenge two datasets
have been made available [3]: a training set with 8,528 la-
beled recordings (for distribution see Table 1) and a hidden
test data set consisting of 3,658 recordings with unknown
labeling. All of these recordings are single lead, 300Hz
ECGs with a duration between 9 and 61 seconds. The data
have been acquired and band-pass filtered by an AliveCor
device: a portable device for easy ECG monitoring.

Table 1. Distrubution of the updated labeling of the train-
ing data set

Rhythm Incidence in training set
NSR 5,050
AF 738
Other rhythm 2,456
Too noisy 284

2.2. Classification

Given the main goal is to distinguish AF from other
rhythms either normal or abnormal, the proposed approach
relies on a large set of known AF features. However these
features often rely on the delineation of the ECG. As the
data set contains noisy recordings, ECG delineation can
be sometimes inaccurate, thus affecting the computation
of these features. To remedy this, a two stage approach is
taken. The first stage aims to distinguish between noisy
and non-noisy recordings. To achieve this, a set of features
is computed that does not rely on the delineation of the
ECG. In the second stage, the recordings not classified as
noisy are delineated and the AF features are extracted, and
provided as inputs to an ensemble learning classifier. En-
semble learning allows combining multiple weak learners
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to obtain better predictive performance than the individual
classifiers. This approach was chosen because the “other
rhythms” class contains a collection of various rhythms
that have different characteristics, and also because differ-
ent kinds of noise may be present, thus increasing the het-
erogeneity within the labels. Both stages mentioned above
share this same approach.

The training data is heavily imbalanced (as can be seen
from its distribution in Table 1). This poses a problem
when fitting a classifier, and certainly when wanting to
distinguish between noisy and non-noisy recordings. An
obvious solution is to get more data from the minority
classes, but for noisy recordings in particular little data
is available. One could also resample the data set where
undersampling of the majority class is the most obvious
approach, but in this case the minority class incidence is
really low, and too much information would be lost to have
a balanced data set. Another approach is to use boosting
to iteratively convert the weak learners into strong ones by
reweighting the data to focus the learners in the next it-
eration on the misclassified data. This does not solve the
class imbalance per se, but improves the performance of
the weak learners in the ensemble. Sampling and boosting
can also be combined in hybrid approaches [4]. An effi-
cient ensemble learning algorithm that can deal with these
constraints is the RUSBoost algorithm [5]. RUSBoost it-
self is based on the AdaBoost algorithm [6] but addition-
ally introduces random undersampling (RUS), a technique
which randomly removes examples from the majority class
[5, 7]. The type of weak learners for the ensemble are de-
cision trees with a minimal leaf size of 5.

2.3. Noise model

In order to distinguish between noisy recordings and all
other recordings, a set of 37 features was used that does
not rely on ECG delineation. These features are listed in
Table 2. Features 1-6 are included to give an approximate
spectrum of the signal at hand. They are extracted by tak-
ing the median absolute deviation of six wavelet scales ob-
tained with the Daubechies 5 wavelet. ECG signals will
have a typical frequency distribution other than noise sig-
nals. Features 7-31 are aimed at defining the regularity of
the signal by means of wavelet multifractal analysis [8, 9].
Features 32-35 characterize the repetitive nature of the sig-
nals and they are obtained from the auto-correlation up to
lag 200. Finally features 36 and 37 describe the general
variability of the signals. For these features an ensemble
model with 1000 weak learners was fitted with RUSBoost
[5] to classify noise and non-noise. Only the 500 most dis-
criminative learners were retained in the model and the rest
discarded for performance reasons.

2.4. Arrhythmia model

For extracting the AF features first the QRS complexes
are detected in the non-noisy signals. This is first at-
tempted by a modified P&T method [10] with fallback to
a Pan-Tompkins detector [11] and different parameter set-
tings. Next a range of AF features as listed in Table 3 is
extracted from the recording.

These features are aimed at describing the spectral prop-
erties of the hearth rate variability (HRV) of the ECG sig-
nals, the ECG signal morphology by symbolic analysis
[12], the complexity of both the ventricular and the atrial
activity, and a variety of other atrial activity indices for
irregularity and variability analysis. Since these features
often rely on the RR intervals, in case no proper detection
of QRS complexes could be performed, the record was la-
beled as noise.

These features were used to create an ensemble model
with 1000 weak learners in the form of decision trees
and which fitted with RUSBoost [5] to further classify the
recordings that were not yet labeled noise. Only the 500
most discriminative trees were retained in the model and
the rest discarded for performance reasons.

3. Results

The score [3] of the algorithm on the partial hidden test
set was 0.88 for NSR, 0.80 for AF, and 0.6 for other ar-
rhythmias, giving an F1 score of 0.76 overall. The overall
final score is 0.75

On the provided validation set (that was part of the train-
ing set) this was 0.94 for NSR, 0.91 for AF, and 0.86 for
other arrhythmias, leading to an overall score of 0.9027.

The confusion matrix for the provided validation set is
shown in Table 4. For the noise model the confusion ma-
trix w.r.t. a randomly selected independent validation set
is shown in Table 5.

4. Discussion

The results on the test set are significantly lower than on
the validation set. Knowing the composition of the test set
would have helped with this interpretation. Both NSR and
AF are scoring relatively well. This is also the case when
the validation set is used. In particular, when looking at
the confusion matrix of the total approach on the valida-
tion set in Table 4, it becomes clear that mainly “other”
arrhythmias are misclassified, and a few measurements are
misclassified as noise. The large difference in performance
to the test set also indicates that overfitting is taking place.

We did an attempt to build an alternative arrhythmia
model to allow for further classification of noisy record-
ings (after the recordings labeled as noisy by the first
model had already been removed). That means that this
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Table 2. Noise features
Feature number Feature
1-6 Signal level per frequency band by maximum absolute deviation of wavelet coefficients
7-9 Log cumulants of the scaling exponents
10-20 Sampled singularity spectrum of the wavelet multifractal analysis
21-31 Signal regularity measure by Lipschitz / Hölder exponents
32 Repetitiveness of signal by maximum value of the auto-correlation
33 Repetitiveness of signal by 0.95 quantile of auto-correlation
34 Repetitiveness of signal by 0.9 quantile of auto-correlation
35 Repetitiveness of signal by average of ten largest peaks from auto-correlation
36 Variability by median absolute deviation of raw ECG signal
37 Variability by variance of raw ECG signal

Table 3. Atrial fibrillation features
Number Variable name Category Feature
1 P LF Spectral indices Peak power in lower PSD of HRV
2 f LF Main frequency in lower PSD of HRV
3 P HF Peak power in upper PSD of HRV
4 f HF Main frequency in upper PSD of HRV
5 meanRR Variability indices Mean RR interval length
6 SDRR Standard deviation of RR interval length
7 rMSSDRR RMS difference of RR interval lengths
8-17 pNNx0 Percentage of RR interval differences > 0.x0
18 V0 Symbolic analysis Perc. sequences 3 heart periods with 0 significant variations
19 V1 Perc. sequences with 1 significant variations
20 LV2 Perc. sequences with 2 significant like variations
21 UV2 Perc. sequences with 2 significant unlike variations
22 n.c.95percQRST Complexity of QRS-T # PCA components needed to explain for 95% variance QRS-T
23-27 SimQRSTx Number of QRS-T pairs with angular distance < π

x
28 n.c.95percP Complexity of P # PCA components needed to explain for 95% variance P
29-33 SimPx Number of P-wave pairs with angular distance < π

x
34 SCN Atrial activity Spectral concentration of atrial activity
35 DF Dominant frequency of atrial activity
36 fWP f-wave power in ECG
37 fWPMAW f-wave power in main atrial wave
38 rhe Relative subband of first and second harmonics
39 SampEn Sample entropy of ECG
40 SampEnMAW Sample entropy of main atrial wave
41 OI Organization index
42 SE Spectral entropy
43 FWA Median f-wave amplitude
44 d.MediaRR Relative difference in mean and median RR interval

Table 4. Confusion matrix on validation set
labels\ prediction NSR AF Other Noise
NSR 141 1 1 7
AF 1 46 1 2
Other 8 3 54 5
Noise 0 1 0 29

alternative classifier was still characterized by four classes
instead of three. Markedly, the results deteriorated signifi-
cantly, even if the noise features were added to the model.

The AF features are apparently not able to accurately
discriminate AF from other arrhythmias or noise. An ob-
vious consideration here is to focus more on the morphol-
ogy of the signals. The approach with ensemble learning
has the limitation that this morphological analysis must be
captured in terms of features. Other approaches such as
deep learning might be more suitable, as they can take as

Table 5. Confusion matrix on validation set of noise model

labels\ prediction Non-noise Noise
Non-noise 799 17
Noise 7 18

inputs the raw signals itself.

4.1. Perspectives: Deep learning

Deep learning [13] is making waves in the machine
learning community by providing an automated way of
translating high dimensional but locally correlated data
into highly predictive feature representations. The features
generated by e.g. convolutional networks are outscoring
those made by hand on tasks such as image classification
[14] and language processing [15]. The specific strength of
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Figure 1. ECG deep learning network with backpropagation

deep learning is that these automated features can be gener-
ated from unlabeled data, by constructing an autoencoder
that is forced to come up with a sparse encoding of the
data, in such a way that it uses the structure of the data and
correlation between dimensions and is able to decode the
original signal from the compressed representation. The
compressed representation can then be used as input for a
classification or regression system.

Prelimininary results (see Fig. 1), using a 6 layer con-
volutional network with 1 dimensional filters resulting in
26 thousand trainable parameters, show that encoding and
decoding a three second excerpt of an ECG signal into
a lower dimensional space is feasible. The question still
to be answered is whether to directly use such encoded
subsections of the signal as additional input to a classi-
fier or to feed the entire sequence into a recursive network
to build an encoding of the entire signal before sending it
to a classifier. To build good encodings of entire signals,
a very large set of measurements, covering all conditions
that need to be predicted, might be required.

5. Conclusions

The approached obtained a final F1 score of 0.75 in the
Physionet/CinC challenge. The feature set is adequate for
detecting AF, but for discriminating the other arrhythmia
additional features are needed. As an alternative, a possi-
ble approach using deep learning to capture morphological
features is discussed.
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