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Abstract 

Phonocardiogram (PCG) signal is used as a diagnostic 

test in ambulatory monitoring in order to evaluate the 

heart hemodynamic status and to detect a cardiovascular 

disease. The objective of this study is to develop an 

automatic classification method for anomaly (normal vs. 

abnormal) and quality (good vs. bad) detection of PCG 

recordings without segmentation. For this purpose, a 

subset of 18 features is selected among 40 features based 

on a wrapper feature selection scheme. These features are 

extracted from time, frequency, and time-frequency 

domains without any segmentation. The selected features 

are fed into an ensemble of 20 feedforward neural 

networks for classification task. The proposed algorithm 

achieved the overall score of 91.50% (94.23% sensitivity 

and 88.76% specificity) and 85.90% (86.91% sensitivity 

and 84.90% specificity) on the train and unseen test 

datasets, respectively. The proposed method got the second 

best score in the PhysioNet/CinC Challenge 2016. 

 

 

1. Introduction 

Heart auscultation is one of the cursory and cost-

effective diagnostic tests. It can provide primary 

evaluation of hemodynamic status and detect a 

cardiovascular disease, such as ventricular septal defects, 

and stenosis in aorta [1]. Heart sound (or 

phonocardiogram) can also offer additional diagnostic 

tests for further medical assessments. 

However, the practical applications of heart sound 

highly depend on cognitive skills and expertise of the 

medical examiner. The limitation of audible frequency 

range, environmental noise, and variation in recording 

regions are other major shortcomings of this test. In order 

to address these shortcomings in a cost-effective diagnostic 
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tests in ambulatory monitoring, several techniques [2-5] 

have been proposed for automatic analysis of heart sounds. 

Phonocardiogram (PCG) signal analysis can fall into 

two major categories. The first type of approaches is based 

on temporal segmentation, i.e. identifying the cardiac 

cycles and localizing the position of the first (S1; 

beginning of the systole) and second (S2; end of the 

systole) primary heart sounds. The variation in the duration 

of S1 and S2, and their intensities are considered as the 

conclusive signs of cardiac anomalies.  

Several studies have been conducted to PCG 

segmentation using different envelope extraction methods 

such as Shannon energy [2], Shannon entropy [3], Hilbert-

Huang transform [4], and autocorrelation [5]. The 

envelope of signal attenuates the noise and amplifies the 

low-intensity components of the signal. Some 

segmentation approaches use envelope extraction based on 

wavelet transform to gain the frequency characteristics of 

S1 and S2 sound [6]. In the second type approaches, 

abnormal PCG records are detected without segmentation 

[7,8].  

In this study we follow the second type approach 

towards PCG classification. The main motivation behind 

this is to remove the dependency on segmentation and 

reduce the computational burden. The main contributions 

of this study are the detailed investigation of time-

frequency features (Section 2.1) and the design of effective 

neural network ensembles (Section 2.2). The proposed 

approach is evaluated on one of the largest public heart 

sound database [10]. The results are discussed in Section 3 

and the Section 4 conclude the paper and suggests topics 

for future research.  

 

2. Methodology 

For this challenge, 3454 PCG labelled records 

(including training and validation sets) are provided by 



Physionet/Computing in Cardiology Challenge 2016 [9]. 

More detailed Information can be found in [10]. The 

proposed feature extraction and classification approaches 

will be discussed next.  

 

2.1. Feature extraction 

In the initial phase of this work, 40 features in the time, 

frequency, and time-frequency domains were extracted. 

Then, a subset containing 18 features were selected using 

a wrapper-based feature selection scheme [11] in which 

sequential forward selection search algorithm [12] was 

used.  The selected features can be categorized into 5 types 

as follows: 

(1) Linear Predictive Coefficient (LPC): the first, 

third, sixth, eight, ninth, and tenth coefficients of 10th-

order linear predictor are used as features. 

(2) Entropy based features: Natural and Tsallis 

entropy of PCG signals are calculated as, 

 

𝐻(𝑥) =  − ∑ 𝑝(𝑥𝑖)

𝑖
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where 𝑝(𝑥𝑖) is the probability of 𝑖th samples of PCG signal, 

𝑥. 𝑘 and 𝑞 are real parameters equal to 1 and 2, 

respectively. 

(3) Mel Frequency Cepstral Coefficients (MFCCs) 

based features: The MFCCs of each PCG signal are 

computed based on the parameter of 14 coefficients for 

frame duration of 25 ms with 10 ms overlap. The extraction 

of MFCCs results in 14 coefficients for each frame, 𝐶𝑖,𝑗, 

where 𝑖 and 𝑗 are the number of features and frames, 

respectively. Once the 𝐶𝑖,𝑗 is calculated, three features are 

extracted as follows: 
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where min
𝑖∈𝐼

𝐶𝑖,𝑗, max
𝑖∈𝐼

𝐶𝑖,𝑗, and Skew
𝑖∈𝐼

𝐶𝑖,𝑗 are the minimum, 

maximum and the skewness of each column of matrix 𝐶. 𝜇 

is the average and 𝑟 = 2. 

(4) Wavelet transform based features: Discrete wavelet 

transform (Daubechies 4) is applied to each PCG 

signal and the approximation coefficients of level 5 

(𝑎5) and the detail coefficients of level 3 to 5 (𝑑3, 

𝑑4, and 𝑑5) are used for feature extraction as 

follow:  
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𝜆(𝑑3) = 𝑙𝑜𝑔2(𝜎2(𝑑3)) (9) 

 

where 𝜎2 is the variance. 𝐻𝑞  is known as Rényi entropy in 

which 𝑞 = 2. 

(5) Features extracted over power spectral density: 

The power spectral density of each signal is calculated 

based on the normalized frequency (i.e. between 0 and 1), 

and then the following features are extracted as follows: 

𝑀𝑃𝑆𝐷𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =  
∫ 𝑓𝑃(𝑓)2𝑑𝑓

∫ 𝑃(𝑓)2 𝑑𝑓
 (10) 

 

𝐴𝑈𝐶1 =  ∫ 𝑃(𝑓)𝑑𝑓
0.8

0.7

 (11) 

 

𝐴𝑈𝐶2 =  ∫ 𝑃(𝑓)𝑑𝑓
1

0.9

 (12) 

where 𝑝(𝑓) represents the power spectral density and  

𝑀𝑃𝑆𝐷𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑  is the modified power spectral density 

centroid. 𝐴𝑈𝐶1 and 𝐴𝑈𝐶2 show the areas under the curve 

over the two specified frequency intervals, i.e. 0.7-0.8, and 

0.9-1. 

 

2.2. Classification 

In this work, the proposed classification algorithm has 

two main steps. In the first step, the bad quality recordings 

(class 0) are detected. In the second step, among the good 

quality signals, the normal (class -1) and abnormal (class 

1) PCGs are classified. This process includes two different 

classifiers: one for good/bad quality recordings, and the 

other for normal/abnormal recordings (Fig. 1). In the 

following the structure of these classifiers are described in 

details. 

 

2.2.1. Ensemble of neural networks  

Ensemble based classification systems construct a set of 

classifiers and then classify new samples by integrating the 

results of those classifiers to obtain a better classification 

performance. In this work, we used an ensemble of 20 

feedforward Artificial Neural Networks (ANNs) with two 

hidden layers in each, and 25 hidden neurons at each layer. 

The number of neurons in the output layer is 4 for the 



purpose of two classification tasks simultaneously, i.e., 

classification of the signal type (normal vs. abnormal) and 

quality (good vs. bad). We used the hyperbolic tangent 

activation function as the transfer function. In addition, we 

used Levenberg–Marquardt optimization method [13] with 

Bayesian regularization backpropagation [14] training 

algorithm. 

 

2.2.2. Training  

To construct the training data for the proposed ensemble 

of ANNs, we used 20-fold cross-validation committee 

[15]. To do so, we generate 20 replicates from the original 

training data, and then by removing 5% disjoint random 

subset from each replica, 20 overlapping training sets were 

constructed. In addition, due to the data imbalance problem 

between normal and abnormal signals, in each training sets 

we used bootstrap resampling method to make the data 

balanced in the following way: First, we calculate the 

number of normal signals (which is higher than abnormal). 

Then, by random sampling with replacement from 

abnormal signals the size of the selected set becomes equal 

to the size of the normal set.  

Although the data get balanced by using the 

aforementioned technique, caution is needed. In bootstrap 

resampling usually the size of the selected samples is equal 

to or smaller than the size of the original data, but in the 

proposed method the size of the selected samples is larger 

than the original data. This would mimic a situation where 

we have a larger dataset than what we actually had, i.e. we 

will get higher precision in the bootstrap resampling than 

what we have in our data, which in our case leads to an 

overfitting problem for abnormal recordings. Our 

impression was that to address this drawback we could use 

the so-called jackknife resampling (i.e. random sampling 

without replacement) of normal recordings instead of 

bootstrap resampling of abnormal recordings. However, 

this technique had inferior performance than the proposed 

technique. Thus we discarded it. Fig. 1 demonstrates both 

the classification strategy and the training procedure. 

 

2.2.3 Combination rule 

The last key factor for the proposed classification 

technique is the combination rule to integrate the results of 

20 classifiers.  In this work we used two approaches: 1) 

non-trainable rule and 2) trainable rule. In the first 

approach, we used unweighted average of class-specific 

outputs [16] of the ANNs. In the second approach, the 

combination is based on the voting system of the class 

labels which is learned during a 10-fold cross-validation 

scheme as follows: if at least 17 out of 20 classifiers 

recognize a signal as bad quality, our algorithm recognizes 

it as bad quality and assigns the label 0. For the remaining 

signals, which recognized as good quality, our algorithm 

decides whether it is normal or abnormal such that if at 

least 7 out of 20 classifiers recognize it as abnormal our 

algorithm detects the signal as abnormal (1) and otherwise 

as normal (-1). 

 

3. Results and discussion 

We have conducted experiments in order to compare the 

two proposed combination rules (Section 2.2.3) for PCG 

classification. The performance of each combination rule 

is evaluated using Sensitivity (Se), Specificity (Sp), and 

Score (Sc) based on the provided scoring mechanism of the 

PhysioNet/Computing in Cardiology Challenge 2016 

[9,10] by running a 10-fold cross-validation procedure. 

In Table 1, these results are shown. Although the 

performance of the two rules are fairly close (91.17% vs. 

 

 
Figure 1. Schematic demonstration of classification strategy and training procedure. 

 



91.50%), the second rule is proposed for applying on the 

unseen test data. The proposed solution achieved the 

overall score of 85.90% (86.91% Se and 84.90% Sp) on 

the unseen test dataset, which is the second best score in 

the competition. 

As discussed in Section 2.1, 18 proposed features were 

selected using a wrapper-based feature selection scheme. 

In that scheme, an internal “feature selection classifier” 

(FS classifier) was used to detect only normal/abnormal 

signals. This means that the features were not selected by 

considering the quality detection task into account and this 

was in accordance by the initial scoring strategy. Only 

during the final stage, the organizers changed the scoring 

strategy and the remaining time was not sufficient to 

redesign the proposed system accordingly. Consequently, 

this decreases the final score. Thus, we decided to adapt 

our former method to the new strategy. In the future, for 

further performance improvement, two independent 

classification scenarios will be designed with such features 

that will be selected accordingly.  

 

4. Conclusion 

This study proposes a solution for anomaly and quality 

detection of PCG recordings without segmentation. The 

proposed method got the second best score in the 

PhysioNet/CinC Challenge 2016. Many previous methods 

based on PCG analysis are relied on segmentation which 

potentially increases the computational burden. The 

achieved sensitivity (86.91%) and specificity (84.90%) on 

the unseen test dataset demonstrate the potential of 

improvement in the future. Designing specific features and 

additional classifier for quality detection may increase the 

system performance.     
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Table 1. The average (Ave) and standard deviation (Std) of Sensitivity (Se), Specificity (Sp), and Score (Sc) using 10-

fold cross-validation procedure for the combination rules. 

 Train (Rule 1) Train (Rule 2) 

Se (%) Sp (%) Sc (%) Se (%) Sp (%) Sc (%) 

Ave. 89.82 92.53 91.17 94.23 88.76 91.50 

Std.   2.79   1.23   1.67   2.22   1.96   1.35 
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