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Abstract 

Multilead signals reflecting electrical activity of the 

heart and hemodynamics give comprehensive but usually 

redundant representation of the processes. Therefore 

fragments of transient corruption or loss of the data in 

one or more leads can be restored substituting them by 

the signals reconstructed using information carried by the 

other leads. Principal component analysis used for 

reduction of dimensionality in representation of the 

physiological processes. It concentrates essential 

information represented by multilead signal into few 

principal components which could form a set of basis 

functions for optimal representation and reconstruction 

of the original signals. The idea of the method is to 

calculate these components from normal fragment of the 

multilead signal and use them for reconstruction of 

missing lead in the corrupted fragment of it. 

 
1. Introduction 

Multivariate analysis methods, particularly Principal 
Component Analysis (PCA) or Karhunen Loeve 
Transform, are successfully used for optimal 
representation of quasiperiodic biomedical signals as 
ECG or EEG [1]. The aim of this procedure often is to 
reduce dimensionality of data representation. The PCA 
transforms the original data set into a new set of vectors 
(the principal components) which are uncorrelated and 
each of them involve information represented by several 
interrelated variables in the original set. According to the 
experience of various authors only few first principal 
components are enough for optimal representation of 
information carried by, for example, 12 lead ECG 
recording [2]. We found that first 5 principal components 
were representing 99.54% of variation in 12 lead ECG 
recordings containing T-wave alternans episodes [3]. 
Moreover, diagnostically informative variation in these 
recordings was represented only by 2 or 3 principal 
components. It shows significant redundancy of the 
original representation, so it is highly expected that 
corrupted or lost signal in one of several ECG leads could 

be restored with proper accuracy using data from other 
leads. 

Other then ECG heart activity reflecting signals (e.g. 
plethysmographic or chest impedance signals), registered 
together also have the same origin – contraction of the 
heart muscle. However there is not much data published 
so far about interdependency of their shape changes. 
Some suggestions could be made from our previous 
investigations on chest impedance signal shape [4]. 
Anyway, we can expect such interdependency and it is 
worth to try to develop this idea. 

 
2.  Methods 

We used PhysioNet database (http://physionet.org/ 
physiobank/database/) signals for processing. Signal 
preprocessing was started with detection of fiducial point 
of each cardiocycle – R-wave. After preliminary detection 
using filtered derivative of the ECG signal we maximized 
cross-correlation of the sliding in time R-wave template 
with the ECG signal. R-wave template was constructed 
from first 10 cardiocycles of the recording and updated 
after every processed cardiocycle. Fixed length exerpts of 
640 ms, or 80 samples surrounding R-wave were 
concerned as cardiocycles. The length and position in 
regard to the fiducial point of excerpts was defined during 
preliminary tests. In case of pletismography, arterial 
blood preasure or impedance signals, the excerpt was 
taken after fiducial point. The excerpts from all leads of 
one heartbeat were concatenated one by one into one 
array. Such concatenated arrays of all uncorrupted 
cardiocycles formed a matrix of samples X, which was 
giving a redundant but comprehensive representation of 
the shape of cardiocycles from the recording considered 
for analysis: 
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where xi,j is the ith sample of the jth cardiocycle. The 
calculated principal components from this matrix were 
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used to perform the optimal representation of all 
cardiocycles in the recording (including the corrupted or 
lost fragments in some leads). The calculated principal 
components are ordered so that the very first of them 
retain most of the variation present in all the original 
variables. Thus it is possible to perform a truncated 
expansion cardiocycle representing vectors by using only 
the first several principal components. Every vector xi 
representing ordinary cardiocycle is then represented by 
linear combination of the principal components φφφφk 

multiplied by the coefficients wi,k: 
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Every coefficient of k-th principal component of j-th 
cardiocycle wi,k is calculated as following: 
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So it is done only for the uncorrupted period of the 
recordings. In corrupted periods the samples of lost data 
lead were excluded from both: registered data array xi and 
principal components φ. Shortened arrays used in 
calculations obviously caused reduction in value of 
coefficients wi,k . Correction of this reduction was 
performed multiplying the coefficients by some constants. 
The values of them were calculated using average ratios 
of the two coefficients calculated for the same cardiocycle 
using full arrays of data and principal components and the 
shortened ones from uncorrupted periods of the signals, 
giving maximal agreement between restored signals. The 
agreement was estimated by the sum of the squares of the 
residuals obtained sample by sample subtracting these 
two signals. 

Minimal yet sufficient number of principal 
components to be used for representation of every 
analyzed recording we determined according to our 
experience described in details in [5]. For determination 
of this number we used cross-validation criterion based 
on the parameter called PRESS (PREdiction Sum of 
Squares) proposed by Wold [6]: 
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where ijm x̂   is the estimate of the original data set 

based not on all but the first m basis functions,  ijx  - the 

original data set. 
 

3.  Results 

The example of extracted cardiocycles from the recording 
containing period of corrupted data is presented on fig. 1. 
First ten principle components calculated from 
concatenated arrays of uncorrupted cardiocycles of the 

recording are presented on fig.2. 
 

 
 
 Figure 1. Extracted cardiocycles from the recordings. 

 
Percentage of the variation of uncorrupted cardiocycles 

in this recording represented by principal components is 
presented in fig.3 together with Wold’s cross-validatory 
estimation criteria PR used to determine the minimal yet 
sufficient number of components. As one can see, first 4  
principle components were representing 99.96 % of 
variation, however according to our experience in 
determining minimal, yet sufficient, number of principal 
components we decided to use first 2 principal 
components (the curve of Wold’s criteria has 
characteristic discontinuity at the 2th principal 
component). About the same situation we observed in the 
majority of the recordings. 
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Figure 2. First ten principle components of uncorrupted 
cardiocycles. 
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Figure 3. Variation of principal components together with 
Wold’s cross-validatory estimation. 
 

The corrupted period of the recording presented on 
fig.1 contained zeros in II lead of ECG. Example of the 
lost samples of one cardiocycle in lead II is presented on 
fig.4, by dashed line. Reconstructed samples of this lead 
are shown by solid line.  
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Figure 4. Reconstructed and control cardiocycle data. 
 
The average ratio between coefficients of first 2 

principal components calculated using full concatenated 
arrays of cardiocycles and truncated ones excluding 
corrupted leads was 1.3798 and varied between 0.7 and 
1.7 in all processed recordings. 

 
4.  Discussion 

Number of minimal yet sufficent number of principal 
components for representation of concatenated arrays of 

cardiocycles in all tested recordings was significantly less 
then number of leads in the recordings. That fact 
confirmed our idea that all informtive variation in the 
signals is redundantly represented by multiple leads. 
Therefore it should be possible to restore lost data in one 
of the leads using information carried by the others. In 
majority of tested recordings the clinical sitution was 
stable and only few principal components were needed to 
represent all informative variation. Tests on recordings 
containing some trends in clinical situation could reveal 
the boundaries of usage of the method. 
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