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Abstract 

Cubic B-Splines are used to approximate mean 

ambulatory blood pressure data and the fitted coefficients 

serve as discretization of the curves. A rank based 

method is proposed to predict Test Set A. A double cross 

validation approach is proposed to predict Test Set B. 

1. Introduction 

The goal of Computers in Cardiology Challenge 2009 

[3] is to predict acute hypotensive episodes (AHE), which 

are defined as any period of 30 or more minutes during 

which at least 90% of mean arterial blood pressure 

measurements are ≤60 mmHg. The Challenge provides 

three datasets: a Training Set, Test Set A and Test Set B. 

The Training Set has data collected from 60 patients, of 

whom 30 patients, denoted as “H”, developed AHE 

during the forecast window. The Test Set A has data from 

10 patients, and one is supposed to predict 5 “H” from 

this set. Test Set B has 40 patents, and one is supposed to 

predict 10 to 16 “H” from this set.  

All datasets include continuous telemetric data for 

heart rate, systolic and diastolic pressure, and mean 

arterial blood pressure (MAP), and other clinical 

information on vital signs, concomitant medications, etc. 

We used only the mean blood pressure data. 

In this paper, we propose a two-stage approach to this 

challenge. The first step is to approximate the mean 

arterial blood pressure curve by cubic B-Splines. The 

resulting coefficients corresponding to the bases are 

considered to be a discretization of the continuous MAP. 

The second step is to find the  

“best subset” of the discretization from the Training Set 

that best discriminated “H” from “C”. This “best subset” 

is then used to predict the “H” from the two test sets.  

2. Cubic B-Splines and discretization 

Cubic B-Splines[1] are used to approximate MAP 

curves. B-Splines generally reflect the local features of 

the target curve.  

Technically, the t-axis of original ABP mean curves are 

inverted so that the t = 0 is the T0, the starting point of the 

prediction window. 

Let ( ), 1, ..., 3B t k K
k

= +  be bases with equally spaced 

K knots. Denote ( ), 1, ...
i j i

ABPM t j n=  to be i
th MAP 

curve. 
1

( )
K

ik k j

k

B tα
=
∑  is used to approximate the MAP 

curve and 
ik

α is a least square estimate by minimizing 

2

1 1

( ( ) ( ))
in K

ik k j i j

j k

B t ABPM tα
= =

−∑ ∑ .  

To select the smoothing parameter, a generalized cross 

validation criterion (K)iGCV
∧

= / ( 1 2.5*( 1))RSS n K
∧

+ − −  

is calculated for each , 1, ...,i i N= . Here N is 70 to 

predict Test Set A by adding Test Set A to the Training 

Set, and N is 100 to predict Test Set B. The smoothing 
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     Figure 1. This figure show cubic B-spline bases with equal spaced k=3 knots.    
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parameter K is selected by minimizing 
1

(K).
N

i

i

GCV
∧

=
∑  

Because of the different lengths of the training datasets, 

the smoothing parameter selection is done first on the 

minimal common interval of length of T=656. The 

remaining intervals are then assigned equally spaced 

knots generated from the common interval  

  The Training Set, Test Set A and Test Set B are fitted 

with the selected K, the result of ( )
ik

α matrices are 

denoted as 60,( )T

K
α , 10,( )A

K
α  and 40,( )B

K
α , respectively. 

These matrices are considered to be discretizations of 

MAP curves and will preserve the features of these 

curves that can be used to carry out discrimination 

analysis. 

3. Rank based discrimination 

A simple rank based discrimination was developed 

from the Training Set and used  to predict Test Set A. We 

first select those columns in 
60,( )T

K
α that have high 

discriminating power, to distinguish H and C cases. We 

rank each column separately and then look at the 

distribution of H and C. Those columns with high 

concentration of H or C at the top or bottom are 

considered to have high discrimination power.  

Let 1 60( , ...., )I i i= ,where 1, ( 1, ..., 30),1
j

i j= − =  

otherwise; 1 60( , ..., )
k k k

α α α=
r

be the k
th column of 

60,( )T

K
α . The order statistics of 

k
αr , where ( )i k is the 

original location of ( )i k k
α  in 

k
αr . 

Then ( ) 1( ) 60( )( , ...., )
k k k

I i i=  is a transformation of ( )k
αr , 

where entry corresponding to H becomes -1 and entry 

corresponding to C becomes 1. Large absolute values of 
30

( )

1

| |
j k

j

i
=
∑  and 

60

( )

31

| |
j k

j

i
=
∑  result from a large concentration 

of similar group at the top or bottom. We define 
30 60

( ) ( )

1 31

| |
k j k j k

j j

i i
= =

Δ = −∑ ∑ , so that a large value of 

k
Δ indicates high discrimination power of 

k
αr . 

3.1. Application to Test Set A 

First, we find which columns have the highest 

discrimination power from the training matrix 
60,( )T

K
α . 

Then, 
k

Δ  is calculated for all columns of  60,( )T

K
α  and the 

result is shown in Table 1. 

The 15 columns that have the largest 
k

Δ ’s are 

columns 5,7,9,11,12,14,25,29,34,35,38,40,44,63,65. 

These columns from matrix 10,( )A

K
α are selected and 

ordered separately. The results from application to Test 

Set A are displayed in Table 2. Except for column 29, 

every ordered column puts cases 101, 102, 104, 109 and 

110 at the top portion that predicts them as “H”. On 

column 29, cases 101, 102, 108, 109, 110 are predicted as 

“H”. From these results, cases 101, 102, 104, 109 and 

110 are predicted as “H” and these answers are correct. 

 

4. Logistic regression and cross-

validation 

For Test Set B, the ranking approach did not generate 

a conclusive result. Therefore, a different approach was 

proposed. By assigning 1 to “H” and 0 to “C”, the status 

could be naturally linked to 60,( )T

K
α  with logistic 

regression. The problem becomes how to search these 

columns from 60,( )T

K
α  that could be used to predict the 

status. The optimal property should not be judged by its 

own status but by the statuses of the other data sets. With 

this setup, the problem falls into a classical “best subsets” 

selection problem. There are many potential different 

solutions to apply to it. Here, we used a double cross-

validation approach.  

4.1. Leave a row out 

First, we will define criteria that could be used to 

select appropriate columns.  

K=5 7 9 11 12 14 25 29 34 35 38 40 44 63 65 

 110 110 110 110 102 110 101 101 101 101 101 101 101 102 104 

 109 101 101 102 109 101 109 110 109 110 102 109 109 104 101 

 104 104 109 101 110 109 110 109 110 109 109 110 104 101 110 

 101 109 104 109 104 102 104 102 102 104 110 102 110 109 109 

 102 102 102 104 101 104 102 108 104 102 104 104 102 110 102 

 108 108 108 108 108 108 108 104 108 108 108 108 108 108 108 

 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 

 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 

 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 

 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 

 

Table 2. Ordering the corresponding column in Test Set A. 

0  8 20 16 24 16 27 11 27 12 24 24 16 24 20  8  8  4 20  7 16  8 12 16 24 16 12 16 28 16 12 20 20 24 28 16 16 24 16 

24 16 20 16 24 16 20 12 16 15 18 22 10 21 13 13 13  5 21 13 16 15 11 23 19 23 19 22 18 18 22 10 18 17 16 12 16 12  

4  8 11 14 10 16 12  4  7 15  9  5 12  8 15 14  9  5  9  1  9  5  7 15 15  3 15  3 15  6  26  5  6  8  4  4  0  4  4  8  4 12  3  9 

13  2 10  6 10  6 17  1  9  9  2  6  2 14  3  4  4  4  2  9  5  1 1  5  3  3  1  0  3  3  7  7 11  3  3  3  7  3  3  3  1  2  2  3  5  5  

3  3  3  3  3  7  7  1  2  2  2  2 2  2  6  6  6  3  1  3  5  1  3  1  7  3  3 10  6  3  1  3  3  3  1  5  5  5  1  8  5 12  5  7  5  7  1  

7  3  7  1  0  1  7  1  2  2  6  3  3  1  3  2  6  6  6  2  2  1  3  1  5  5  5  5  1  5  1  7  1  1  5  1 ……… 

Table 1. 
k

Δ from
60,( )T

K
α  
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Denote  Y and 60,( )T

K
α = ( )1 60,..., ,

tα α where 
k

α is a 

vector of coefficients of k
th MAP curve. For each i , 

remove 
i

y  from Y , 
i

α from 60,( ) Kα . Fit the remainder 

iY−  to ( )t

iα −  with logistic regression, the coefficient is 

denoted as iβ− . Then,  iy  can be predicted by 

y exp / (1 exp ).i i i i

i

β α β α− −
− = +  

Repeat this procedure for all , 1,...,60i i =  in the 

Training Set, so that we obtain the prediction of Y by 

1, 60( ..., )t

p
Y y y− −= . 

We now define ( ) (| |) c pCVF mean Y Yα = −  and 

( ) #   such that | | 0.5d i i iCVF of y y yα − −= − ≤ . ( )cCVF α is 

a continuous measure for closeness of pY  to Y , while the 

discrete measure of ( )dCVF α  counts how many correct 

predictions are made if we assign 1 if y i−  >0.5 and 0 

otherwise. 

These two statistics will be used to guide the selection 

of columns from  
60,( )T

K
α . 

4.2. Leave a column out 

Starting with full columns of 60,( )T

Kα , we will delete 

less optimized columns repeatedly until no further 

improvement can be made. 

Denote 
60,( )T

K
α = ( )1,...,

K
α α , where kα is k

th column. 

For each 1,...,k K= , remove kα from 60,( )T

Kα . ( )c kCVF α−  

and ( ) d kCVF α− were then calculated, where kα−  is the 

remainder matrix of  60,( )T

K
α  thk column removed. From 

Session 4.1, the smallest ( )c kCVF α−  or largest 

( )d kCVF α−  indicates that removing the corresponding 

column will produce a better prediction. 

We start with full columns and delete a column each 

time with one of the following strategies: 1) remove the 

column with the smallest ( )c kCVF α− ; 2) remove the 

column with the largest 40( ) 43dCVF α− = . For strategy 2, 

when there are tiers, we remove all the columns at the 

early stages. When tiers occur at the late stages, we 

remove the column with the smallest ( )d kCVF α− . The 

procedure is continued until no further improvement can 

be made. The remaining columns are considered the best 

prediction columns to denote  60,( ) .K lα −  

We do logistic regression of Y  on 60,( ) K lα −  to get 

coefficient K lβ − . The B
y is predicted by 

60, 60,( ) ( )
e / (1 e ).

B B
K l K l K l K lα β α β− − − −+  

4.3. Application to Test Set B 

The first curve was removed from the Training Set 

because of a large missing segment near the beginning. 

Thus, 59 curves were used in the cross-validation 

process.  

The initial leave-a-row-out procedure returns the 

largest 40( ) 48dCVF α− = . After removing column 40, the 

second run returns the largest 

26 33 44( ) ( ) ( ) 55d d dCVF CVF CVFα α α− − −= = = . After 

removing columns 26, 33 and 44, the procedure 

returns 22( ) 58dCVF α− = . After removing column 22, the 

procedure did not provide further improvement.  

Denote (22, 26,33,40, 44)s = . Let sβ−  be the 

coefficient of logistic regression of Y on 60,( ) K sα − . 

The B
y is predicted by 60, 60,( ) ( )

e / (1 e ).
B B

K s s K s sα β α β− − − −+  

Simply predicting “H” by | 1) 0.5B

iy − < seemed to 

overestimate the number of “H”. The result is refined by 

the ranking method. For “H” that B

i
y is close to 0.5, only 

these cases that are also predicted as “H” by the ranking 

method are assigned as “H”.  The adjustments generate 

three entries containing 11, 13 and 13 “H” cases. All 

three entries predict 33 out of 40 correctly.  

5. General discussions 

This manuscript proposes a two-stage method for 

predicting AHE from continuous MAP data. In statistical 

literature, most two-stage approaches can eventually be 

improved by joining two steps into a simultaneous 

process. The two-stage approach proposed here is 

different from these types of approaches. B-Splines 

fitting is used to find the best fit for the curve, and the 

second stage finds the best predictors from the fitted 

coefficients. The best predictors may not necessarily be 

the best base to fit the curve.   

The proposed approach has the potential to be 

employed in searching for hidden clinical features that 

may not be easily seen from a digitized wave dataset. 

Indeed, our approach does not assume any prior 

knowledge about the dataset or its clinical interpretation.  

It may be possible to do much better in predicting 

clinical events if we utilize other channels—heart rate, 

systolic and diastolic pressure, or other clinical telemetry 

data—but we have not explored how much these add, or 

even if the MAP data were the optimal single channel. 

In addition, the proposed methods could be further 

improved by careful consideration of how to access 

variances in the data sets and estimates. 

The training datasets have various lengths, from 656 to 

14,986. The logistic regression and cross-validation 

methods we used require each dataset to be the same 
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length. Therefore, only limited data segments with the 

common length of 656 are used in the logistic regression 

and cross-validation. This limitation can probably be 

overcome. 

Interestingly, we note that in the results of both sets A 

and B, knots at early times were mostly selected for 

prediction. This suggests some power for predicting AHE 

further temporally removed.   

Disclaimer 

The views expressed in this manuscript are those of 

the authors and not necessarily those of the Food and 

Drug Administration. 
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