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Abstract 
Z3is study investigated the automatic prediction of 

epochs of sleep apnea from the electrocardiogram. A 
large independently validated database of 70 single lead 
ECGs, each of approximately 8 hours in duration, was 
used throughout the study. Thirty five of these records 
were used for training and 35 retained for independent 
testing. Ajier considering a wide variety of features we 
found that features based on the power spectral density 
estimates of the R-wave maxima and R-R intervals to be 
the most discriminating. Results show that a classification 
rate of approximately 89% is achievable. 

1. Introduction 
Sleep apnea is commonly defined as the cessation of 

breathing during sleep. Clinicians usually divide sleep 
apnea into three major categories - obstructive, central, 
and mixed sleep apnea. Obstructive sleep apnea (OSA) is 
characterized by intermittent pauses in breathing during 
sleep caused by the obstruction andor collapse of the 
upper airway. This is typically accompanied by a 
reduction in blood oxygen saturation, and leads to 
wakening from sleep in order to breathe. Central sleep 
apnea (CSA) is a neurological condition which causes the 
loss of all respiratory effort during sleep, and is also 
usually marked by decreases in blood oxygen saturation. 
Mixed sleep apnea combines components of both CSA 
and OSA, though treatment of the OSA portion often 
spontaneously leads to improvement in the CSA condition 
also. 

In order for sleep apnea to be considered as clinically 
significant, the apnea episodes should be of ten seconds or 
longer duration, and occur more than five times per hour 
(the exact definitions vary from specialist to specialist 
[ 11). Patients suffering from sleep apnea are more prone to 
hypertension, heart disease, stroke, and irregular heart 
rhythms (arrhythmias). Continued interruption of quality 
sleep is also associated with depression, irritability, loss of 
memory, lack of energy, and a higher risk of car and 
workplace accidents. 
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Currently, a definitive diagnosis of sleep apnea is made 
using a polysomnogram. This is a recording in which 
multiple signals are recorded simultaneously from the 
patient while asleep (a typical polysomnogram includes 
measurements of blood oxygen saturation, blood pressure, 
EEG, ECG, EOG, EMG, nasaVoral airflow, chest effort, 
and abdominal effort). Typically a full night’s sleep is 
observed before a diagnosis is reached, and in some 
patients a second night’s recording is required. Because of 
the number and variety of measurements made, this test is 
somewhat uncomfortable for the patient and also has a 
relatively hgh  cost. Techniques which can reliably 
provide a diagnosis of sleep apnea with less invasive 
measurements, and without the need for a specialized 
sleep laboratory will be of benefit. 

Ths  paper considers the use of the electrocardiogram 
(ECG) for detection of sleep apnea using a variety of 
classification features based on the ECG timing intervals 
and amplitudes. This classification technique was 
evaluated using a database provided by Philipps- 
University. This database contains ECG recordings which 
have been annotated on a minute-by-minute basis for the 
presence of sleep apnea. This provides a gold-standard 
measure based on the assessment of a clinical panel with 
access to the full set of polysomnogram measurements. 
The database contains signals from 70 subjects with 
approximately eight hours of data per subject. The ECG 
signal and classifications of 35 of the recordings are 
available for training and the other 35 classifications are 
withheld for independent validation of classifiers. 

2. Methods 
The ECG signals contained in the database consisted of 

12-bit samples, recorded at a sampling rate of 1OOHz. 
Unvalidated QRS onset times were also supplied with the 
ECG database. 

2.1. Data pre-processing 
The raw ECG signal was processed using a linear phase 

hgh  pass filter with a cutoff frequency of 0.5 Hz to 
remove baseline wander. R-R intervals were defined as the 
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interval between successive R wave maxima All the QRS 
detection times were realigned to the R wave maxima by 
searching for the maximum in the region 100 milliseconds 
beyond the QRS onset. 

Plots of the R-R intervals defined in this manner 
showed that records 2, 6, 12 and 25 of the training data 
and 13, 14, 15, 17,20, 25, and 26 of the testing data had a 
significant number, of physiologically unreasonable R-R 
intervals. A first processing step was to correct these. All 
suspect R-R intervals were found by applying a median 
filter of width 5 to the sequence of R-R intervals. This 
provided a robust estimate for each R-R interval of its 
expected value. Variations from this expected value led to 
it being flagged as a suspect interval. 

Extraneous QRS detections were found by comparing 
the sum of adjacent R-R intervals with the robust R-R 
estimate. If this sum was numerically closer to the robust 
estimate than either of the individual R-R intervals then an 
extraneous detection was present. The two R-R interval 
were merged to form a single interval. 

Conversely, if an R-R interval was a factor of 1.8 times 
or more than the robust estimate then it is probable that a 
QRS complex was not detected. To recover the missing 
QRS complexes the R-R interval was divided by the 
sequence of integers 2,3,4, ... until it best matched the 
robust estimate of the R-R interval. The single R-R 
interval was then subdivided by the appropriate integer to 
form a series of new detections. For each new detection, a 
search was made in region of 100 milliseconds either side 
of that detection for the maximum of the ECG signal. If 
this maximum was similar to the maxima of the 
surrounding QRS complexes, it time of occurrence was 
accepted as a valid QRS detection point otherwise the 
original new detection point was used. A visual inspection 
of the new R-R intervals showed a significant 
improvement. The R-wave amplitude was defined as the 
value of the ECG signal at the QRS detection points 
defined by the above processing. 

2.2. Feature sets 
The pre-processing steps outlined above result in (a) an 

ECG signal with baseline wander removed and (b) a 
robust set of valid R-R intervals. Based on these, we 
considered a large set of features that could potentially be 
used for classification. Since the database classifications 
were provided for one minute segments of data, features 
were generated for each one minute segment. Features 
typically reflected only data from within a single segment, 
though we also considered multi-segment features. Some 
of the features considered were: 

Mean RR interval 
Standard deviation of the RR interval 
First and second serial correlation coefficients of 
the RR intervals 
Other time domain measures of RR intervals such 

as "50 and pNN50 [2] 
0 Allan variance of the RR intervals evaluated at 

various time scales 
Mean PR interval 

0 Standard deviation of the PR intervals 
Serial correlation coefficients of the PR intervals 

0 Count- (or rate-)-based spectrum of the RR 
intervals. 

0 Interval based spectrum of the RR intervals 
0 R-wave amplitude spectrum 
A useful summary of RR-interval based measures is 

contained in [3]. PR-interval measurements were 
investigated since changes in autonomic function are 
known to modulate PR interval length [4]. The PR 
interval was defined by using a wavelet-based algorithm 
to detect the peak of the P-wave, which could then be used 
to derive a PR interval. All of the measures listed above, 
except for the R-wave amplitude spectrum, reflect timing 
information only. This emphasis on timing-based 
measyes was based on two assumptions: (a) timing 
information is more robust to data acquisition artifacts 
such as noise, motion, baseline wander, etc., and (b) the 
processes leading to apnea occur at a location external to 
the heart, so that amplitude and shape characteristics of 
the ECG only reflect local cardiac conditions, not the 
process leading to apnea. However, in light of our results, 
in which the R-wave amplitude appears to be significant, 
the second assumption may need further consideration. 

Since our results show that the interval-based RR and 
the R-wave amplitude power spectral density are the most 
useful features for classification, it is worth carefully 
defining how these quantities were calculated. In 
particular, there is significant confusion in the literature 
between interval-based and count-based spectra of RR 
data, as noted in [5]. 

The RR interval based PSD was calculated in the 
following way. For each record (the complete set of one- 
minute segments for an individual subject), the sequence 
of RR intervals was normalized to have a zero mean and 
unit variance. The purpose of this was to make the spectral 
features independent of the overall heart rate for each 
patient. A sequence of RR intervals was associated with 
each one-minute segment. The index for this sequence was 
beat number, not time. The mean RR interval for that 
segment was removed from each value, to yield a zero- 
mean sequence. The sequence was zero-padded to length 
256, and the fast Fourier transform was taken of the entire 
sequence. This yields a periodogram estimate of the power 
spectral density, which has a high variance. Averaging of 
four adjacent frequency bins was used to yield a 64-point 
PSD estimate (of which only bins 0-32 are relevant since 
bins 33-63 are complex conjugates of 1-31). The x-axis 
has units of cyclesheat (not Hz as for a rate-based PSD). 

The R-wave amplitude spectrum was calculated as 
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Number of Crossvalidated test set Cross-validated training Set Training set Indep. test set 
Features Am(%) Sens(%) Spec(%) Am(%) Sens(%) Spec(%) Am(%) Sens(o/o) Spec(%) Am(%) 

RR 32 79.2 72.5 83.3 80.3 73.9 84.2 80.3 74.0 84.3 
R 32 77.6 64.8 85.6 78.8 67.2 86.0 78.9 67.2 86.1 

RR+R 64 84.1 80.0 86.6 85.2 81.8 87.3 85.2 81.8 87.3 
RR+R+REL 128 88.2 84.1 90.7 89.8 86.5 91.9 89.7 86.4 91.8 88.9 

dass size 17045 6514 10531 17268 

Table 1: The overall accuracies, sensitivities and specificities for the different feature sets for the cross- 
validated test and training data, full training data and independent test data. 

Key: RR: features derived from frequencies bins of the PSD of the RR intervals R: features derived from 
frequencies bins of the PSD of the R wave heights RR+R: both PSD features combined RR+R+REL: both 
PSD features combined plus the relative features (see text for description) 

follows. For each record, the sequence of R-wave 
amplitudes was normalized to have zero mean and unit 
variance. A discrete sequence of R-wave amplitudes for 
each 1-minute segment was formed. The mean value for 
the block was removed prior to spectral estimation using 
the periodogram technique outlined above. 

For all of the features considered above a relative 
feature was generated by taking the feature value in the 
current segment and subtracting off the mean of the same 
feature values of the four segments immediately prior and 
following the current segment. Thus, a value of a relative 
feature close to zero indicated that the feature was similar 
to its neighbours and a value far from zero indicated that it 
was different. 

2.3. Classifier 
A supervised training technique was used to derive all 

classifiers. In supervised training, a classifier model that 
maps the input features to the required output classes is 
chosen. The model has a set of adjustable parameters that 
are optimized using training data. For this study linear 
discriminants classifier models were used. This model 
provides a parametric approximation to Bayes rule [6], so 
in response to a set of input features the output of each 
classifier is a set of numbers representing the probability 
estimate of each class. The final classification is obtained 
by choosing the class with the highest probability 
estimate. 

Linear discriminants partition the feature space into the 
different classes using a set of hyper-planes. Optimisation 
of the model is achieved through direct calculation and is 
extremely fast relative to other models. 

Other classifier models including quadratic 
discriminants and neural networks were trialed during the 
project. Although they resulted in an increase in training 
set accuracy their test set performance was always poorer 
than linear discriminants. 

2.4. Feature selection 
The performance of most classifier training algorithms 

is degraded when one or more of the available features are 
redundant or irrelevant. Redundant features occur when 
two or more features are correlated whereas irrelevant 
features do not separate the classes to any useh1 degree. 
The classification performance of a given set of features 
may often be improved by searching for a subset of the 
features with higher performance. Finding this optimal 
subset is generally computationally intractable for 
anything apart from small feature sets. This is because the 
number of possible subsets rises exponentially with size of 
the feature set. In practice a sub-optimal heuristic search 
such as the stepwise procedure is used [6]. A stepwise 
procedure for feature selection was used in this study. 

When comparing the subsets, the best performance 
measure to use is the classification performance but again 
computational restrictions prevent this being implemented. 
We have used Wilk's Lambda [6], which is a measure of 
class separation to measure the performance of the 
subsets. A low value of Wilk's Lambda indicates good 
separation of the classes and indicates probable high 
classification performance. Hence feature selection 
involves finding a subset with the lowest value of Wilk's 
Lambda. 

2.5. Classification performance estimation 
When developing a classifier it is important to be able 

to estimate the expected performance of the classifier on 
data not used in training. The available data must be 
divided into independent training and testing sets. There 
are a number of schemes for achieving th s  and the most 
suitable for the size of data set used in this study, is n-fold 
cross validation [7]. This scheme randomly divides the 
available data into n approximately equal size and 
mutually exclusive "folds". For an n-fold cross validation 
run, n classifiers are trained with a different fold used each 
time as the testing-set, while the other n-1 folds are used 
for the training data. Cross validation estimates are 
generally pessimistically biased, as training is performed 
using a subsample of the available data. 

For this study we divided the available training data 
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into 35 folds with each fold containing the data for one 
record. 

In this study we report the overall classification 
accuracy, sensitivity and specificity. The overall accuracy 
is the percentage of total epochs correctly classified. 
Sensitivity is the percentage of apnea epochs correctly 
classified. The specificity is the percentage of normal 
epochs correctly classified. 

2.6. Implementation 
The work for this project was performed on a 600 MHz 

Pentium II PC running MATLAB version 5.3. All 
algorithms for feature selection, classifier training and 
data partitioning were developed in-house. 

Calculation of the PSD features took approximately 15 
minutes for the training and testing sets. A run of cross- 
validation with 128 features took about 5 minutes. 

3. Results 
Table 1 shows the classification results of the different 

feature sets. Three sets of results are shown. The cross- 
validated test set performance, the cross-validated training 
set performance and the independent test set accuracy. The 
testing set results are discussed below. 

The interval-based PSD features of the R-R intervals 
resulted in a classification accuracy of 79.2% on the cross- 
validated test set. The sensitivity was 72.5% while the 
specificity was higher at 83.3%. Slightly lower results 
were obtained for the feature set derived from the PSD of 
the R-wave amplitudes. The accuracy for this set was 
77.4% with a sensitivity of 64.8% of and specificity 
85.6%. All though giving similar performance, the two 
PSD feature sets provided complementary classification 
mformation as, when combined, the accuracy increased to 
84.1% (row 3 of table 1). When relative features were 
introduced to the combined PSD feature set the accuracy 
increased to 88.2% with a sensitivity of 84.1% and 
specificity of 90.7%. This classifier was submitted for 
independent classification and the overall reported 
accuracy was 88.9%. 

Applying feature selection to the above feature groups 
did not improve the test-set classification performance so 
all features were retained. It was noted that at the expense 
of a small reduction in classification performance (<OS%) 
the number of features could be significantly reduced. 

By considering the full set of epochs for a patient 
record, we were also able to screen patients for the 
presence of clinically significant apnea. Of the thlrty non- 
borderline records presented in the database, our system 
successfully classified them into normal and pathological 
cases. 

4. Discussion 
The results of t h s  work indicate that detection of sleep 

apnea epochs is possible with an accuracy of 

approximately 89%. Both the time of occurrence of the 
QRS complex, and its R-wave amplitude are of use for 
classification. It is possible that the R-wave amplitude 
changes are an artifact of the ECG recording system due 
to the motion of the electrodes during breathing, rather 
than reflecting a physiological response of the heart. 
Nevertheless it was a consistent characteristic of the ECG. 

If apnea is accompanied by changes in activity in the 
autonomic nervous system, it may influence the 
autonomic input to the heart. This may explain the 
importance of the RR-interval variations in the 
classification process. 

Classification of epochs leads to the ability to screen 
patients for the presence of apnea with high reliability. 
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