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Abstract 

We present a method of screening for  obstructive 
sleep apnoea based on the electrocardiogram (ECG). The 
algorithm combines information from the ECG-derived 
respiration (EDR) signal and the RR interval tachogram. 
Power spectral features from the EDR signal were 
computed using the discrete harmonic wavelet transform, 
considering the power at the respiratory frequency and 
at frequencies below 0.1 Hz. Cycles of tachyhradycardia 
(consistent with an arousal from sleep, as would be 
expected at the end of an episode of apnoea) were ident$ed 
from the RR interval tachogram. Features were collated 
into minute-by-minute vectors and passed to a classifer. 
The algorithm correctly classi$ed 81 % of all minutes in 
the test database, with 29/30 patients correctly identifed 
as apnoea or normal. Visual class$cation produced 92% 
correct classijication, with all 30 patients correct. 

1. Introduction 

The obstructive sleep apnoeahypopnoea syndrome 
(SAHS) has been estimated to affect up to 4% of 
middle-aged males and 2% of middle-aged females [l] .  
The syndrome is characterised by repetitive episodes of 
airway narrowing or collapse during sleep, with each 
episode terminating in arousal and resumption of normal 
breathing. The resulting sleep fragmentation causes 
daytime sleepiness, with consequences such as increased 
risk of road traffic accidents [2]. The SAHS also carries 
an increased risk of hypertension, although the mechanisms 
underlying the association between the two are not yet 
clear [3, 41. Polysomnography is traditionally used to 
diagnose the SAHS; however, this is both time-consuming 
and expensive, and a cheaper diagnostic test (commonly 
overnight oximetry) is frequently used to reduce the load on 
a sleep laboratory. In this paper, we show how information 
derived from the electrocardiogram (ECG) can be used to 
screen for the SAHS. 

The arousal which terminates each episode of apnoea 

or hypopnoea elicits the orienting reflex [5] ,  causing an 
increase in heart rate and blood pressure. Measurements of 
such autonomic responses can provide a sensitive marker 
of arousals from sleep [6] ,  and heart rate measurements 
can easily be made from the ECG. However, autonomic 
arousals are not exclusive to the SAHS, as similar patterns 
are seen in other sleep disorders (such as periodic limb 
movement syndrome [7 ] ) ,  and in response to spontaneous 
arousal [6].  

The ECG offers additional information which may be 
used in screening for the SAHS. Respiration causes changes 
in the ECG electrode position on the chest (with respect to 
the heart) and also changes in thoracic impedance. These 
changes cause a well-known change in the electrical axis 
of the ECG which is closely correlated with respiration [ 8 ] .  
This signal has previously been applied to the detection of 
the SAHS [9, lo], and is denoted here as the ECG-derived 
respiration (EDR) signal. 

The algorithm outlined in the next section combines 
information from both the EDR signal and autonomic 
arousals. 

2. Methods 

2.1. Subject data 

The algorithm was evaluated on data from the Computers 
in Cardiology 2000 Challenge, available from the Physionet 
website [ll].  This data set consists of overnight, single 
channel ECG recordings (sampled at 100Hz) obtained 
from 70 patients. Thirty-five recordings are designated as 
training data, and minute-by-minute annotations (denoting 
apnoeic or normal breathing during each minute) are 
available for these recordings. The remainder of the 
recordings make up the test data set. Both the training and 
test sets contain recordings from 20 patients with moderate 
to severe obstructive sleep apnoea, 10 control patients, and 
5 “borderline” patients (for further details of the data and 
for category definitions see the Physionet website). 
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2.2. Signal preprocessing 

The time of each heartbeat was identified from the ECG 
using a QRS template-matching algorithm followed by 
automatic and manual correction. 

The EDR signal is conventionally derived from 
measurements of the QRS complex [9], which corresponds 
to the rapid contraction of the ventricles as blood is expelled 
from the heart. Due to the low sampling rate of these 
data combined with the relatively fast changes in the ECG 
during the QRS complex, this feature was found to give a 
poor estimation of respiratory activity. We instead opted 
to base the EDR on measurements of the T-wave, which 
corresponds to the slow repolarisation of the ventricles 
after contraction. T-waves were assumed to fall within 
a fixed window (typically 15-40ms) following each QRS 
complex. Each signal segment within this window was 
linearly detrended and the average absolute value of the 
segment retained as the value of the EDR signal at that time. 

The RR interval tachogram was constructed by taking the 
difference between consecutive beat times. This signal was 
low-pass filtered to remove respiratory sinus arrhythmia. 

2.3. Feature extraction 

The discrete harmonic wavelet transform (DHWT) [ 121 
was used to characterise the time-frequency properties of 
the EDR signal. The DHWT has the desirable property 
that each wavelet scale (termed a ”level”) represents a 
unique frequency band. In order to compute the DHWT, 
the Fourier coefficients of the EDR signal are first required. 
However, the EDR signal is unevenly sampled (samples 
are available only at the time of each T-wave). The non- 
equispaced Fourier transform [ 131 was therefore used to 
compute the Fourier coefficients. A sampling rate of 1.2Hz 
was used as this yields DHWT levels which are convenient 
for respiratory analysis. The DHWT has been successfully 
applied to the identification of moderate to severe SAHS 
based on the RR interval signal [ 141. 

The DHWT time-frequency map was normalised with 
respect to total power at each time slice. Since we are 
interested in the relative powers in various bands of the 
frequency spectrum, the absolute magnitude of the EDR 
signal is unimportant. 

Each episode of apnoea or hypopnoea causes a swing 
in the baseline of the EDR signal (see Figure I ) ;  one of 
the signal components of interest is therefore at the rate 
of episode repetition, generally between 15-60s (0.01 7- 
0.07Hz). This corresponds to levels 1 1  and 12 of the 
DHWT of the EDR signal, which cover the frequency band 
0.01 875-0.075Hz. The termination of a respiratory event is 
also often accompanied by compensatory hyperventilation, 
which causes a burst of power in the DHWT at the 
respiratory frequency. Level 15 of the EDR DHWT 
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Figure 1. An example of the ECG-derived respiratory 
signal during apnoea and its discrete harmonic wavelet 
transform. 

(which covers the frequency band 0.3-0.6Hz) was therefore 
processed using a second DHWT in order to identify bursts 
recurring at 15-60s intervals. 

The orienting reflex causes an increase in heart rate and 
blood pressure at the termination of each respiratory event. 
In turn, the rise in blood pressure elicits a decrease in heart 
rate, so that arousals are marked by a tachyhradycardia 
cycle in heart rate. Such arousals were identified on 
the basis of the slope of the RR interval signal. A 
decrease of 6ms per second, sustained over a 10s window, 
was considered to be a significant tachycardia, provided 
it was followed within 20s by a bradycardia of similar 
dimensions. The time of occurrence and amplitude of each 
tachyhradycardia cycle were noted. 

Features were assembled into vectors, with one four- 
element vector per minute of each recording. For minute 
k of a recording, the first two feature vector elements were 
the median powers in levels 1 1  and 12 of the EDR DHWT 
during that minute. If the sum of these two powers exceeded 
20% of the median signal power during minute k ,  then 
evidence of an arousal was sought during minute k and the 
first half of minute k + 1. The maximum power related 
to compensatory hyperventilation and the amplitude of the 
largest tachyhradycardia during that time were taken as 
arousal features. In the event that no tachyhradycardia 
cycle occurred during a given minute, a value of zero was 
used for the last element. 
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The feature vectors were passed to a mixture model 
classifier [ 151. Once each minute in a given test recording 
had been classified, an overall label of “apnoea” or 
“normal” was assigned to that recording. Test recordings 
with less than 40 total minutes of apnoea (approximately 5 
apnoeas per hour) were considered to be normal. 

I I 

3. Results and discussion 

For the minute-by-minute classification of the test set 
recordings, an accuracy of 81% was obtained (14052/17268 
correct classifications). The labelling of each test patient 
gave 29/30 correct overall classifications, with one control 
subject incorrectly labelled as apnoea. 

classifications improved the results significantly, to 92% 
accuracy (with all 30 patients correctly labelled). 

The majority of the classification.errors produced by the 
algorithm probably stemmed from episodes of hypopnoea. 
Whereas an apnoea is a near-complete cessation of airflow, 
an obstructive hypopnoea is a partial reduction in airflow 
amplitude caused by airway narrowing (but not total 
collapse). Since respiration remains partially intact, the 
EDR signal during an episode of hypopnoea can be 
expected to show a component at the respiratory frequency 
(0.3-0.6Hz). Figure 2 shows an example of the type of data 
which was frequently misclassified as being normal by our 
algorithm. Since the EDR signal shows a strong component 
at the respiratory frequency (approximately 0.4Hz), this 
data segment was probably recorded during a period of 
recurring hypopnoeas. The training set annotations made 
no distinction between apnoea and hypopnoea, so this could 
not be confirmed. 

There were further difficulties with the classification 
performance of the algorithm which were probably caused 
by hypopnoeas. The definition used for hypopnoea in 
the competition data was as follows: intermittent drops 
in respiratory flow below 50%, accompanied by drops 
in oxygen saturation of at least 4%, and followed by 
compensating hyperventilation. It is known that 4% dips in 
saturation are an insensitive marker of the SAHS [16], and 
recent guidelines [ 171 recommend a less stringent definition 
of hypopnoea. 

The EDR signal and autonomic arousals shown in 
Figure 3 suggest two separate, short periods of disordered 
breathing (and indeed our algorithm classified both periods 
as apnoea). However, the annotations for this recording 
deny disordered breathing during the second period. It 
is possible that the respiration patterns during the second 
period did not quite meet the definition of hypopnoea and 
were therefore scored as normal. Our algorithm may be 
more sensitive to the SAHS than the polysomnography- 
derived annotations. 

Subsequent manual editing of the minute-by-minute 
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Figure 2. An example of data which was frequently 
misclassified as normal by the algorithm. The ECG-derived 
respiratory signal shows large baseline swings but strong 
activity at the respiratory frequency (black squares indicate 
times of autonomic arousals). 
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Figure 3. An example of ambiguity in the diagnostic 
signals. The ECG-derived respiratory signal (top; black 
squares indicate times of autonomic arousals) suggest 
respiratory events from time 158-161 and from 170- 
174. However, the annotations (derived from the 
polysomnogram) confirm respiratory events only from 158- 
161. 

4. Conclusions 

The performance of this and other algorithms developed 
for the Computers in Cardiology 2000 Challenge is an 
encouraging step toward reliable screening for the SAHS 
using the ECG. However, the nature of the test subjects 
should be kept in mind: most displayed moderate to severe 
SAHS which is generally well-characterised by oximetry 
alone. Oximetry may well have given similarly good results 
and with lighter computational requirements (oximetry data 
for the test subjects were not available at the time of 
writing). 

The sensitivity of oximetry in screening for the SAHS 
is known to be poor [16]; the performance of the current 
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approach when applied to mild SAHS patients is yet to be 
seen. However, there is good reason to be optimistic, since 
the arousal response which accompanies the termination of 
each episode of disordered breathing is similar regardless of 
syndrome severity. The diagnostic value of the EDR signal 
in mild SAHS is not known. Replacing the single ECG 
lead with two orthogonal leads may be necessary, as this is 
known to improve the accuracy of the derived EDR signal 

Screening using the ECG rather than oximetry has 
one clearly favourable point: the fact that the ECG has 
been recorded would allow a cardiological screening test 
to be carried out using the same data. Cardiovascular 
comorbidities are common in the SAHS [ 181, and a pre- 
polysomnography ECG is commonly carried out as a 
routine component of the diagnostic protocol for the SAHS 
[191. 

r91. 
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