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Aging alters brain structure and function and diabetes mellitus (DM) may accelerate this
process. This study investigated the effects of type 2 DM on individual brain aging as well
as the relationships between individual brain aging, risk factors, and functional measures.
To differentiate a pattern of brain atrophy that deviates from normal brain aging, we used
the novel BrainAGE approach, which determines the complex multidimensional aging
pattern within the whole brain by applying established kernel regression methods to
anatomical brain magnetic resonance images (MRI). The “Brain Age Gap Estimation”
(BrainAGE) score was then calculated as the difference between chronological age and
estimated brain age. 185 subjects (98 with type 2 DM) completed an MRI at 3Tesla,
laboratory and clinical assessments. Twenty-five subjects (12 with type 2 DM) also
completed a follow-up visit after 3.8 ± 1.5 years. The estimated brain age of DM subjects
was 4.6 ± 7.2 years greater than their chronological age (p = 0.0001), whereas within
the control group, estimated brain age was similar to chronological age. As compared
to baseline, the average BrainAGE scores of DM subjects increased by 0.2 years per
follow-up year (p = 0.034), whereas the BrainAGE scores of controls did not change
between baseline and follow-up. At baseline, across all subjects, higher BrainAGE scores
were associated with greater smoking and alcohol consumption, higher tumor necrosis
factor alpha (TNFα) levels, lower verbal fluency scores and more severe depression. Within
the DM group, higher BrainAGE scores were associated with longer diabetes duration
(r = 0.31, p = 0.019) and increased fasting blood glucose levels (r = 0.34, p = 0.025). In
conclusion, type 2 DM is independently associated with structural changes in the brain
that reflect advanced aging. The BrainAGE approach may thus serve as a clinically relevant
biomarker for the detection of abnormal patterns of brain aging associated with type 2 DM.

Keywords: aging, BrainAGE , diabetes mellitus (DM), magnetic resonance imaging (MRI), voxel-based

morphometry (VBM)

INTRODUCTION
The global prevalence of type 2 diabetes mellitus (DM) is pro-
jected to rise sharply over the coming decades. Individuals aged
65 years and older have a particularly high risk of developing
diabetes complications, due to the combination of both mod-
ifiable (i.e., lifestyle), and non-modifiable risk factors (Zimmet
et al., 2001). Within this population, type 2 DM has been linked
to increased brain atrophy (Araki et al., 1994; Schmidt et al.,
2004; Last et al., 2007; De Bresser et al., 2010; Van Elderen et al.,
2010; Novak et al., 2011), impaired cognitive function (Reijmer
et al., 2011), increased risk of depression (Anderson et al., 2001;
Ali et al., 2006) and dementia, including both vascular demen-
tia and Alzheimer’s disease (AD) (Janson et al., 2004; Xu et al.,
2004; Biessels et al., 2006; Velayudhan et al., 2010; Tan et al., 2011;
Cheng et al., 2012).

Chronic hyperglycemia is associated with vascular disease
and neurotoxicity leading to neuronal damage (Tomlinson
and Gardiner, 2008). Within the brain, hyperglycemia appears
to induce structural abnormalities resembling the progres-
sive, widespread atrophy often associated with biological aging
(Gispen and Biessels, 2000; Biessels et al., 2006). Moreover, within
the DM population, such generalized atrophy may be detected
at an earlier age (Araki et al., 1994). Clinical manifestations of
DM-related brain abnormalities include worse functional status
(Stewart and Liolitsa, 1999; Biessels et al., 2006), deficits in cogni-
tion [i.e., verbal memory, mental flexibility, and processing speed
(Gispen and Biessels, 2000; Cheng et al., 2012)], and depression
(Heuser, 2002; Wolkowitz et al., 2010, 2011; Katon et al., 2012).
As such, recognition and quantification of subtle deviations from
aging-related brain atrophy may afford prospective identification
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and subsequent treatment of patients with DM who are at risk for
clinically-significant functional decline.

Based on the widespread but well-ordered brain tissue loss that
occurs with healthy aging into senescence (Good et al., 2001),
we previously proposed a modeling approach to identify abnor-
mal aging-related brain atrophy that may precede the onset of
clinical symptoms. We introduced a novel BrainAGE approach
(Franke et al., 2010, 2012b) based on a database of single time-
point structural magnetic resonance imaging (MRI) data that
aggregates the complex, multidimensional aging patterns across
the whole brain to one single value, i.e., the estimated brain
age (Figure 1A). Consequently, subtle deviations in “normal”
brain atrophy can be directly quantified in terms of years by
analyzing only one standard MRI scan per subject (Figure 1B).
Recently, we demonstrated that the BrainAGE approach enables
the identification of advanced brain aging in subjects with mild
cognitive impairment and AD, and observed profound relation-
ships between BrainAGE, disease severity, prospective worsening
of cognitive functions (Franke et al., 2012a), conversion to AD
(Gaser et al., 2013), as well as certain health and lifestyle markers
(e.g., the metabolic syndrome; Franke et al., 2013).

In this study, we implemented the BrainAGE method to quan-
tify the effects of type 2 DM on individual brain aging in non-
demented older adults. We further explored the relationships
between individual brain aging and clinically significant lifestyle
risk factors (i.e., smoking duration, alcohol intake), clinical labo-
ratory data [i.e., fasting blood glucose level as a potential indicator
of hyperglycemia, tumor necrosis factor alpha (TNFα) as a poten-
tial indicator of persistent inflammation], and common clinical
outcomes (i.e., cognition, depression). We hypothesized that type
2 DM is associated with greater BrainAGE scores, and that clin-
ically significant risk factors additionally contribute to this pro-
cess. We also hypothesized that those individuals with greater
BrainAGE scores would also exhibit worse outcomes related to
cognition and depression.

RESEARCH DESIGN AND METHODS
SUBJECTS
To train the age estimation framework, we used MRI data of
561 healthy subjects [250 males] from the publicly accessible IXI
cohort (http://www.brain-development.org; data downloaded in
September 2011) aged 20–86 years [mean (SD) = 48.6 (16.5)
years; for more sample details see Franke et al. (2010)].

The current BrainAGE analyses were conducted using existing
records of 185 subjects (98 with diagnosed type 2 DM; Table 1)
who previously participated in studies within the Syncope
and Falls in the Elderly (SAFE) Laboratory at the Beth Israel
Deaconess Medical Center (BIDMC). A subset of these subjects
(n = 25, 12 with type 2 DM; Table 2) also completed a follow-up
MR scan after an average of 3.8 years (SD = 1.5).

Participants were recruited consecutively via advertisement in
the local community and provided informed consent as approved
by the Institutional Review Board. Controls were required to
have normal fasting glucose, but had a similar distribution of
risk factors. All participants were screened with a medical his-
tory and physical and laboratory examinations. Participants with
DM were treated with insulin, oral glucose-control agents (sul-
fonylurea, second generation agents or their combinations), or
diet only. Several participants in each group were treated for
hypertension and/or hypercholesterolemia. Excluded were partic-
ipants with type 1 DM, a history of stroke, myocardial infarction
within 6 months, and other clinically important cardiac diseases,
arrhythmias, significant nephropathy, kidney or liver transplant,
renal or congestive heart failure, carotid artery stenosis (over 50%
by medical history and MR angiography), neurological or other
systemic disorders; claustrophobia, metal implants, pacemakers,
arterial stents incompatible with 3Tesla MRI. All participants were
admitted to the Clinical Research Center for an overnight stay.
Laboratory chemistries were collected after overnight fasting, and
MRI was done before noon. Functional clinical outcomes were
acquired through a battery of neuropsychological tests, including

FIGURE 1 | Depiction of the BrainAGE concept. (A) The model of
healthy brain aging is trained with the chronological age and
preprocessed structural MRI data of a training sample (left; with an
exemplary illustration of the most important voxel locations that were
used by the age regression model). Subsequently, the individual brain
ages of previously unseen test subjects are estimated, based on

their MRI data [blue; picture modified from Schölkopf and Smola
(2002)]. (B) The difference between the estimated and chronological
age results in the BrainAGE score. Consequently, positive BrainAGE
scores indicate accelerated brain aging. [Image reproduced from
Franke et al. (2012a), with permission from Hogrefe Publishing, Bern]
?, unknown age.
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Table 1 | Demographic and clinical variables of the cross-sectional

control and type 2 DM groups.

Control group Type 2 DM group p

No. subjects 87 98 NS

Gender (men/women) 41/46 53/45 NS

Age mean (years) 65.3 (8.5) 64.6 (8.1) NS

Hypertension (yes/no) 22/65 56/42 <0.05

Diabetes duration (years) – 11.3 (9.3) –

GM volume (ml) 528.9 (63.5) 519.0 (52.3) NS

WM volume (ml) 540.2 (78.3) 536.2 (90.8) NS

Total brain volume (ml) 1347.7 (147.2) 1338.1 (146.2) NS

BMI (kg/m2) 25.4 (3.7) 28.8 (4.8) <0.0001

Smoking duration (years) 9.4 (15.1) 10.9 (14.6) NS

Alcohol intake (dose/
week)

2.0 (3.3) 5.1 (14.3) NS

Non-fasting blood glucose 82.0 (13.2) 124.0 (56.4) <0.0001

Fasting blood glucose
(Visit 2)

86.7 (13.6) 110.6 (32.4) NS

TNFα 1.6 (0.7) 1.6 (0.5) NS

Verbal fluency (T-score) 50.0 (10.1) 39.5 (12.8) <0.0001

Geriatric depression scale
(total score)

3.8 (4.8) 6.4 (6.4) NS

Data are means ± SD unless otherwise indicated. p denotes between-group

comparisons.

Table 2 | Demographic and clinical variables of the longitudinal

subsample.

Control group Type 2 DM group p

No. subjects 13 12 NS

Gender (men/women) 5/8 4/8 NS

Hypertension (yes/no) 2/11 7/5 NS

B
as

el
in

e Age mean (years) 69.9 (5.5) 63.3 (6.9) <0.05

GM volume (ml) 501.6 (62.5) 493.1 (47.4) NS

WM volume (ml) 528.7 (84.1) 554.5 (76.6) NS

Total brain volume (ml) 1308.1 (143.9) 1302.0 (150.8) NS

Fo
llo

w
-u

p Age mean (years) 73.9 (5.7) 66.8 (6.7) <0.01

GM volume (ml) 511.7 (63.6) 505.1 (47.7) NS

WM volume (ml) 522.9 (65.0) 533.7 (108.8) NS

Total brain volume (ml) 1306.3 (127.6) 1303.5 (161.8) NS

Data are means ± SD unless otherwise indicated. p denotes between-group

comparisons.

assessments for learning and memory, depression, and physical
function.

In order to quantify the relationship between BrainAGE
scores, life-style risk factors and clinical outcomes, the following
data were extracted: body mass index (BMI), smoking dura-
tion, alcohol intake, non-fasting blood glucose levels, parame-
ters of diabetes control (duration, fasting blood glucose levels),
common clinical outcomes [i.e., verbal fluency, more specifi-
cally “semantic fluency,” requiring the generation of exemplars
of the category “animals” (Harrison et al., 2000; Fisher et al.,

2004) and depression as measured with the Geriatric Depression
Scale (GDS; Yesavage, 1988)], and inflammation markers
(TNFα).

MAGNETIC RESONANCE IMAGING
All studies were performed within the Center for Advanced MR
Imaging at the BIDMC on the same 3Tesla GE HDx MRI scan-
ner using a quadrature and phase array head coils (GE Medical
Systems, Milwaukee, WI). Anatomical images were acquired
using 3-D magnetization prepared rapid gradient echo (MP-
RAGE) (TR/TE/TI = 7.8/3.1/600 ms, 3.0 mm slice thickness, 52
slices, bandwidth = 122 Hz per pixel, flip angle = 10◦, 24 cm
× 24 cm FOV, 256 × 192 matrix size) and fluid attenuated
inversion recovery (FLAIR) (TR/TE/TI = 11000/161/2250 ms,
5 mm slice thickness, 30 slices, bandwidth = 122 Hz per pixel,
flip angle = 90◦, 24 cm × 24 cm FOV, 256 × 160 matrix size)
sequences.

PREPROCESSING OF MRI DATA AND DATA REDUCTION
Preprocessing of the T1-weighted images was done using
the SPM8 package (http://www.fil.ion.ucl.ac.uk/spm) and
the VBM8 toolbox (http://dbm.neuro.uni-jena.de), running
under MATLAB. All T1-weighted images were corrected for
bias-field inhomogeneities, then spatially normalized and
segmented into gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) within the same generative model
(Ashburner and Friston, 2005). The segmentation procedure
was extended by accounting for partial volume effects (Tohka
et al., 2004), by applying adaptive maximum a posteriori esti-
mations (Rajapakse et al., 1997), and by using a hidden Markov
random field model (Cuadra et al., 2005; Gaser, 2009). The
images were processed with affine registration and smoothed
with 8-mm full-width-at-half-maximum smoothing kernels.
Spatial resolution was set to 8 mm. For further data reduction,
principal component analysis (PCA) was performed on the
training sample with subsequently applying the estimated
transformation parameters to the test sample. PCA was done
using the “MATLAB Toolbox for Dimensionality Reduction”
(http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensi
onality_Reduction.html), running under MATLAB.

AGE ESTIMATION FRAMEWORK
The BrainAGE framework utilizes a machine-learning pattern
recognition method, namely relevance vector regression (RVR;
Tipping, 2001). It was recently developed to estimate individual
brain ages based on T1-weighted images (Franke et al., 2010).
In general, the model is trained with preprocessed whole brain
structural MRI data of the training sample (here: the IXI sam-
ple). Subsequently, the brain age of each test subject can be
estimated using the individual tissue-classified MRI data, aggre-
gating the complex, multidimensional aging pattern across the
whole brain into one single value (Figure 1A). The difference
between estimated and true chronological age will reveal the indi-
vidual brain age gap estimation (BrainAGE) score. Consequently,
the BrainAGE score directly quantifies the amount of accelera-
tion or deceleration of brain aging. For example, if a 70 years
old individual has a BrainAGE score of +5 years, this means
that this individual shows the typical atrophy pattern of a 75
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years old individual (Figure 1B). Recent work has demonstrated
that this method provides reliable and stable estimates (Franke
et al., 2012a). Specifically, the BrainAGE scores calculated from
two shortly delayed scans on the same MRI scanner, as well as on
separate 1.5T and 3.0T scanners, produced intraclass correlation
coefficients (ICC) of 0.93 and 0.90, respectively.

Within this study, the BrainAGE framework was applied using
the linear combination of preprocessed (as described in the sec-
tion “Preprocessing of MRI data and data reduction”) GM and
WM images. For training the model as well as for predicting indi-
vidual brain ages, we used “The Spider” (http://www.kyb.mpg.
de/bs/people/spider/main.html), a freely available toolbox run-
ning under MATLAB. For an illustration of the most important
features (i.e., the importance of voxel locations for regression with
age) that were used by the RVR to model normal brain aging and
more detailed information please refer to Franke et al. (2010).

STATISTICAL ANALYSIS
Descriptive statistics were used to summarize all variables.
Demographic and laboratory data were compared between
the control and the DM groups using analysis of variance
(ANOVA) for continuous variables or Kruskal–Wallis tests for
categorical variables and variables that were not normally dis-
tributed. Normality was tested using Shapiro–Wilk tests. Cross-
sectionally, within-group differences between estimated brain age
and chronological age were tested using Student’s t-test.

The effect of DM on BrainAGE was determined with ANOVA.
The dependent variable was the BrainAGE score. Model effects
included group (i.e., DM and non-DM controls), hypertension
(i.e., with/without hypertension), and gender.

Relationships between BrainAGE and clinical parameters were
then analyzed in the whole sample (i.e., DM and non-DM sub-
jects together), controlling for age, gender, and diabetes duration
(with diabetes duration = 0 years for non-DM controls). As not
all subjects had values for all clinical variables, univariate correla-
tion analyses were used (instead of multivariate models) to assess
the relationships between BrainAGE and distinguished lifestyle
measures (i.e., BMI, smoking duration, alcohol intake), clini-
cal laboratory data (i.e., fasting blood glucose level, TNFα) and
functional measures (i.e., T-score for verbal fluency, total GDS
score for depression). In order to control for covariates, Pearson’s
pairwise correlation were used for normally distributed variables,
and Spearman’s correlations were used for variables that are not
normally distributed, with adjustment for age, gender, and dia-
betes duration (right-tailed for verbal fluency, left-tailed for all
others). To control for multiple comparisons, Bonferroni–Holm
correction (Holm, 1979) was applied, adjusting the p-value for
the number of variables analyzed (i.e., 7).

The effect of diabetes-status within the relationships between
BrainAGE and lifestyle parameters, clinical laboratory data and
outcome measures were investigated by performing analysis of
covariance (ANCOVA). Each specific ANCOVA included all
those subjects who were measured in each specific clinical vari-
able, sub-grouped by DM. Since fasting blood glucose levels
were provided for only three non-DM control subjects, this
variable was excluded from this analysis. For all other vari-
ables, the model fitted separate lines for both groups, thus,

allowing the intercept as well as the slopes to vary between both
groups.

To further explore the relationship between BrainAGE and
clinical parameters, the whole sample was divided into quartiles
for each of the significantly related lifestyle measures (i.e., smok-
ing duration, alcohol intake), clinical laboratory data (i.e., fasting
blood glucose level, TNFα), and outcome measures (i.e., ver-
bal fluency, depression). To illustrate the relationships between
individual brain aging and extreme levels in each of these vari-
ables, the BrainAGE scores in the 1st quartile (lowest 25% of
values) of each lifestyle and functionality measure were tested
against the BrainAGE scores in 4th quartile (highest 25% of val-
ues) of each lifestyle and functionality measure, using one-tailed
t-tests (right-tailed for verbal fluency, left-tailed for all oth-
ers). Bonferroni–Holm-adjusted p-values were used to determine
significance.

Within the subsample that completed two MRI scans, the
longitudinal changes in individual BrainAGE scores were fitted
against time between both scans with a multivariate linear regres-
sion model. BrainAGE scores at baseline and follow-up visit, as
well as longitudinal changes in BrainAGE were compared between
both groups using ANOVA.

The Shapiro–Wilk test was performed using JMP 9.0 (www.

jmp.com). All other testing was performed using MATLAB 7.11.
(www.mathworks.com).

RESULTS
GROUP CHARACTERISTICS
All variables except diabetes duration, BMI, alcohol intake and
GDS scores were normally distributed. Age, gender, GM, WM,
and total brain volumes did not differ between groups (Table 1).
The DM group had higher BMI (p < 0.0001), higher non-fasting
blood glucose levels (p < 0.0001), greater prevalence of hyper-
tension (p < 0.05), and worse performance in verbal fluency
(p < 0.0001) than controls (Table 1).

CROSS-SECTIONAL BrainAGE ANALYSES
Although brain volumes did not differ between the groups, the
DM subjects had significantly higher BrainAGE scores than con-
trols (F = 17.2; p = 0.0001; Figure 2). Additionally, BrainAGE
scores did not correlate to brain volumes (Figure 3). Within the
control group, estimated brain age was similar to chronologi-
cal age [t(0.975, 86) = 0.0; p = 1.0]. In DM subjects, however, the
average BrainAGE score was 4.6 years (SD = 7.2); i.e., their esti-
mated brain age was 4.6 years greater than their chronological
age [t(0.975, 97) = 6.4; p = 0.0001]. Additionally, within the DM
group, those with longer diabetes duration had higher BrainAGE
scores (r = 0.31, p = 0.019). This relationship was independent
of age, gender, and duration of hypertension history.

Across all subjects, BrainAGE scores were higher in males as
compared to females (F = 7.7; p = 0.006). There were no effects
for hypertension (F = 0.0; p = 0.9), or any interaction (group ∗
hypertension: F = 0.6; p = 0.46; group ∗ gender: F = 0.7; p =
0.41; hypertension ∗ gender: F = 0.1; p = 0.79).

Across all subjects, higher BrainAGE scores were signifi-
cantly correlated with lifestyle factors, i.e., increased duration of
smoking (r = 0.20, p = 0.007) and greater alcohol consumption

Frontiers in Aging Neuroscience www.frontiersin.org December 2013 | Volume 5 | Article 90 | 4

http://www.kyb.mpg.de/bs/people/spider/main.html
http://www.kyb.mpg.de/bs/people/spider/main.html
www.jmp.com
www.jmp.com
www.mathworks.com
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Franke et al. Advanced brain aging in diabetes

(r = 0.24, p = 0.001), as well as clinical laboratory data, i.e.,
higher fasting blood glucose (r = 0.34, p = 0.025) and TNFα

(r = 0.29, p = 0.01) levels. Higher BrainAGE scores were also
correlated with lower verbal fluency (r = −0.25, p = 0.006) and
higher depression scores (r = 0.23, p = 0.012). All correlations
were independent of age, gender, and diabetes duration.

FIGURE 2 | Estimated brain age vs. chronological age for controls

and subjects with type 2 DM. The BrainAGE scores (i.e., the
difference between the estimated and the chronological age) differed
between groups, with mean (± SD) BrainAGE scores of 0.0 ± 6.7
years in healthy controls (blue) and 4.6 ± 7.2 years in type 2 DM
subjects (red; p < 0.0001).

Additionally, ANCOVAs were performed to investigate the
effects of DM status on the relationships between BrainAGE
scores and distinguished lifestyle factors, clinical variables,
and outcome measures. Although BrainAGE scores were gen-
erally higher in DM subjects, higher BrainAGE scores were
also related to increased smoking duration (F = 5.13, p <

0.05), increased alcohol intake (F = 7.63, p < 0.01), increased
TNFα (F = 6.24, p < 0.05), decreased verbal fluency (F =
4.07, p < 0.05), and increased GDS scores (F = 7.17, p <

0.01) in DM subjects as well as in non-DM controls (Table 3,
Figure 4).

To exemplarily quantify the relationship between brain atro-
phy and lifestyle factors, clinical laboratory data and functionality,
the BrainAGE scores of subjects with the lowest values in those
measures (i.e., 1st quartile) vs. subjects with the highest values
in those measures (i.e., 4th quartile) were contrasted (Table 4;
Figure 5). These analyses resulted in significant differences in
BrainAGE of 3.4 years for smoking duration (p = 0.004), 4.1
years for alcohol intake (p = 0.003), 5.5 years for fasting blood
glucose (p = 0.02), 5.4 years for TNFα (p = 0.006), 5.6 years for
verbal fluency (p = 0.001), and 5.4 years for depression scores
(p = 0.002).

LONGITUDINAL BrainAGE ANALYSES
A subsample of 25 subjects (12 DM subjects and 13 controls)
completed a second MRI scan 3.8 ± 1.5 years after their base-
line assessment. In this subsample, GM, WM as well as total brain

FIGURE 3 | BrainAGE scores plotted against GM and WM volumes for all subjects. BrainAGE scores did not correlate to either GM (left; r = 0.02,
p = 0.81) or WM volumes (right; r = 0.09, p = 0.20).

Table 3 | ANCOVA results for BrainAGE scores and distinguished variables.

Model Coefficient estimates

Group Variable value Group × Value Intercept Slope

F p F p F p t p t p

BMI 17.4 0.0001 0.02 0.89 2.4 0.12 0.94 0.35 0.36 0.39

Smoking duration 21.4 0.0001 5.13 0.02 0.0 0.97 2.6 0.01 2.26 0.02

Alcohol intake 11.8 0.0007 7.63 0.006 6.82 0.009 2.13 0.03 3.54 0.0005

TNFα 11.2 0.001 6.24 0.01 0.16 0.69 1.61 0.11 2.18 0.03

Verbal fluency 6.28 0.01 4.07 0.04 0.06 0.80 2.79 0.006 1.96 0.05

GDS 7.12 0.009 7.17 0.008 1.46 0.23 1.47 0.14 2.94 0.004

Bold type = significant test results.
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FIGURE 4 | ANCOVA plots for BrainAGE scores and distinguished

variables. BrainAGE scores are plotted against BMI, smoking duration,
alcohol intake, TNFα, verbal fluency, and GDS scores for non-DM
controls (blue) and subjects with type 2 DM (red). In both groups,

higher BrainAGE scores were significantly related to increased smoking
duration (p < 0.05), increased alcohol intake (p < 0.01), increased TNFα

(p < 0.05), decreased verbal fluency (p < 0.05), and increased GDS
scores (p < 0.01).

Table 4 | Comparison of BrainAGE scores between the quartile groups in the whole sample.

Mean (SD) BrainAGE score (years) p for trend

1st quartile 2nd quartile 3rd quartile 4th quartile

BMI 3.04 (6.06) 0.59 (7.54) 1.68 (5.75) 3.90 (7.37) 0.29

Smoking duration 1.67 (6.43) – 0.87 (6.51) 5.07 (7.25) 0.012

Alcohol intake 1.30 (6.57) – 0.82 (5.97) 5.42 (6.07) 0.002

Fasting blood glucose 2.38 (7.34) 0.13 (7.67) 5.21 (4.22) 7.85 (3.02) 0.036

TNFα −1.30 (6.31) 0.20 (6.64) 0.51 (7.16) 4.11 (5.75) 0.10

Verbal fluency 6.47 (6.98) 3.14 (6.92) 0.72 (5.38) 0.86 (6.63) 0.002

GDS 0.62 (6.56) 2.78 (7.65) 2.72 (5.37) 6.01 (5.73) 0.015

Bold type = significant test results.

volumes did not differ between groups (Table 2), or across time
points (GM volume: p = 0.48; WM volume: p = 0.58; total brain
volume: p = 0.99). Interestingly, however, we observed a change
in BrainAGE over time that was dependent upon group (F = 6.9;
p = 0.015; Figure 6). Specifically, as compared to baseline, aver-
age BrainAGE scores increased in DM subjects by 0.2 years per
follow-up year. Within the control group, as expected, BrainAGE
scores were similar to chronological age at baseline and follow-
up and therefore, did not change over time. In other words,
whereas the BrainAGE scores of patients with DM were on average
5.1 years higher than controls at baseline (F = 6.2; p = 0.020),
they were on average 5.9 years higher than controls at follow-up
(F = 5.0; p = 0.034).

DISCUSSION
This study implemented a novel MRI-based biomarker that
comprises well-established and fully automated steps for pro-
cessing standard T1-weighted MR images, aggregating the
complex, multidimensional aging pattern across the whole
brain into one single value; i.e., the BrainAGE score. This
method has the advantage of accurately and reliably esti-
mating brain age with minimal preprocessing and parameter
optimization (Franke et al., 2010, 2012b), using a sin-
gle anatomical scan. The BrainAGE score directly quanti-
fies subtle deviations from the normal brain-aging pattern
and may therefore provide clinically important prognostic
information.
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FIGURE 5 | Quartile analyses. Mean BrainAGE scores in subjects with
values in the 1st and 4th quartiles of distinguished variables. Error bars
depict the standard error of the mean (SEM). ∗p < 0.05, ∗∗p < 0.01.

FIGURE 6 | Longitudinal BrainAGE changes in controls and type 2 DM

subjects. Longitudinal changes in BrainAGE scores for non-DM control
subjects (blue) and type 2 DM subjects (red). Thin lines represent individual
changes in BrainAGE over time; thick lines indicate estimated average
changes for each group. The change in BrainAGE over time was dependent
upon group (p = 0.01), providing preliminary longitudinal evidence that type
2 DM accelerates brain aging.

In this study, the BrainAGE approach was used to deter-
mine the effects of type 2 DM on brain aging. Although GM,
WM, and total brain volumes did not differ between groups,
BrainAGE scores were on average 4.6 years greater in DM subjects
as compared to non-DM controls. Moreover, BrainAGE scores
tended to be higher in those with longer diabetes duration and
higher fasting blood glucose levels, suggesting a potential link
between worse glycemic control and pathologic brain atrophy.
Longitudinal analyses further indicated that DM might result
in greater increases in BrainAGE scores over time (despite no
detectable change in global brain tissue volumetrics). Together,
these results suggest that the BrainAGE score may be sensitive
to subtle, glucose-mediated structural brain changes that reflect
a pattern of premature brain aging (Araki et al., 1994; Gispen

and Biessels, 2000; Biessels et al., 2006; Van Elderen et al., 2010;
Velayudhan et al., 2010; Tan et al., 2011).

This study also revealed that individual brain aging was cor-
related with numerous clinical outcomes. Across all subjects, and
independently of diabetes duration, age, and gender, those with
higher BrainAGE scores consumed more alcohol. This obser-
vation is supported by recent studies suggesting a U-shaped
relationship between alcohol consumption and cognitive impair-
ment (Anttila et al., 2004; Solfrizzi et al., 2008). Higher BrainAGE
scores were also linked to increased TNFα levels, which are now
believed to play a central role in the pathogenesis of AD (Tobinick
and Gross, 2008). To this end, those with higher BrainAGE scores
also tended to have worse verbal fluency. Finally, those subjects
with higher BrainAGE scores were more likely to have more
severe depressive symptoms, which is in line with recent studies
linking depression to both advanced brain aging (Heuser, 2002;
Wolkowitz et al., 2010, 2011) as increased risk of dementia (Katon
et al., 2012).

The BrainAGE approach was designed to recognize and indi-
cate deviations in age-related spatiotemporal brain changes.
Subjects with a high BrainAGE score may thus be at risk for sev-
eral neurodegenerative diseases and related functional declines.
Higher BrainAGE scores as well as profound correlations to
disease severity and prospective worsening of cognitive func-
tions have already been observed in subjects with mild cogni-
tive impairment and AD (Franke et al., 2012a). The BrainAGE
approach was even capable of identifying subjects who will be
diagnosed with AD up to three years in advance, with each
additional year in the BrainAGE score being associated with
a 10% greater risk of developing AD (Gaser et al., 2013). As
such, larger prospective trials are warranted to confirm our ini-
tial observation that type 2 DM leads to premature brain aging,
and to determine whether this pattern is similar to those of
other neurodegenerative diseases. In future research, we aim
to further explore and disentangle age- and unrelated disease-
based processes of brain atrophy in neurodegenerative diseases
(e.g., vascular dementia, AD) as well as its effects on BrainAGE
estimations.

In the present study, there was considerable variance associ-
ated with individual BrainAGE scores, as well as intra-individual
changes in BrainAGE scores over time. As we have previously
reported (Franke et al., 2013), and confirmed in this study, a
number of nutrition, lifestyle, and health parameters likely con-
tribute to this variance. For example, in older male adults without
major disease, 39% of the inter-subject variance in BrainAGE was
explained by the set of clinical markers under consideration, with
markers of the metabolic syndrome mainly contributing to this
variance (Franke et al., 2013). As individual changes in lifestyle
(e.g., smoking cessation, physical activity, intake of unsaturated
fatty acids, moderate alcohol intake) were shown to lower the risk
of cognitive decline and dementia (Erickson et al., 2010; Frisardi
et al., 2010; Nepal et al., 2010), such lifestyle changes may be also
related to a decrease in individual BrainAGE. Future research is
therefore warranted to determine the effects of individual health
and lifestyle modification, as well as improved DM control (e.g.,
a lowering of blood glucose levels), on longitudinal changes in
individual BrainAGE scores.
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It is of note that WM lesions, which occur primarily due
to cerebro-vascular diseases (Hadjidemetriou et al., 2008; Zhan
et al., 2009), are not detected in the segmentation approach used
within the BrainAGE analysis. Such lesions segmented as GM may
therefore influence the RVR. However, as the prevalence of WM
lesions was minimal in the current cohort, it is unlikely that this
limitation influenced the training of “normal brain aging.” Thus,
even though the current BrainAGE method has high test-retest
reliability (Franke et al., 2012a), it may benefit from the develop-
ment and implementation of segmentation methods that enable
automated detection of WM lesions even without any additional
FLAIR sequence (Klöppel et al., 2011).

As not all subjects had values for all clinical variables, we
were unable to utilize multivariate models to examine the rela-
tionship between BrainAGE and health-related outcomes, as this
approach would have resulted in an extreme reduction in sam-
ple size (n = 17). Future studies with larger samples are therefore
needed to enable multivariate analyses designed to identify the
complex interactions between brain aging, lifestyle factors, and
clinical outcomes. Moreover, as our prospective cohort was rather
small, it still remains unclear whether the presence of type 2 DM
and/or lifestyle risk factors represents the cause or consequence
of observed associations. Further research is therefore needed
to extend our results on the longitudinal relationships between
individual brain aging and miscellaneous risk factors (e.g., dia-
betes, lifestyle, depression) in a larger population-based sample.
Furthermore, the relationship between the duration of exposure
to risk factors and accelerated brain aging, and whether reversal
of modifiable factors might decelerate the progression of brain
aging, should be explored.

As BrainAGE scores are calculated from a single T1-weighted
MRI per subject, using processing techniques that can be fully
automated with multi-center data, this approach may be eas-
ily implemented into clinical practice in order to encourage the
identification of subtle, yet clinically-significant, changes in brain
structure. With regards to type 2 DM, the implications of this
study may lead to a clinical tool that identifies people at risk of
faster degradation of brain structure and function and poten-
tial risk for dementias, thus, contributing to an early diagnosis
of neurodegenerative diseases and facilitating early treatment or
preventative interventions.

AUTHOR CONTRIBUTIONS
Katja Franke is the guarantor of this work and, as such, had full
access to all the data in the study and takes responsibility for
the integrity of the data and the accuracy of the data analysis.
Katja Franke analyzed data, wrote the manuscript, and edited
the manuscript. Christian Gaser contributed to discussion and
reviewed manuscript. Brad Manor researched data, contributed
to discussion and reviewed/edited manuscript. Vera Novak
researched data, contributed to discussion and reviewed/edited
manuscript.

ACKNOWLEDGMENTS
Katja Franke MA and Christian Gaser PhD—are funded by
grants from Bundesministerium für Bildung und Forschung
(BMBF) 01EV0709 and the European Community FP7 HEALTH,

Project 279281 (BrainAge). Novak Vera MD PhD—is funded by
grants from NIH-NIA 1R01- AG0287601A2, NIH-NIDDK 5R21
DK084463, and was funded by grants from American Diabetes
Association, Clinical 1-03-CR-23 and 1-06-CR-25 related to this
study. Brad Manor—is supported by a KL2 Medical Research
Investigator Training (MeRIT) award (1KL2RR025757-04) from
Harvard Catalyst. The content of this article is solely the
responsibility of the authors and does not necessarily rep-
resent the official views of the BMBF, National Center for
Research Resources, or NIH. No potential conflicts of inter-
est to this article were reported. Part of the study was pre-
sented at the 18th Annual Meeting of the Organization for
Human Brain Mapping to be held June 10-14, 2012 in Beijing,
China.

REFERENCES
Ali, S., Stone, M. A., Peters, J. L., Davies, M. J., and Khunti, K. (2006). The preva-

lence of co-morbid depression in adults with Type 2 diabetes: a systematic
review and meta-analysis. Diabet. Med. 23, 1165–1173. doi: 10.1111/j.1464-
5491.2006.01943.x

Anderson, R. J., Freedland, K. E., Clouse, R. E., and Lustman, P. J. (2001). The
prevalence of comorbid depression in adults with diabetes: a meta-analysis.
Diabetes Care 24, 1069–1078. doi: 10.2337/diacare.24.6.1069

Anttila, T., Helkala, E. L., Viitanen, M., Kareholt, I., Fratiglioni, L., Winblad, B.,
et al. (2004). Alcohol drinking in middle age and subsequent risk of mild cogni-
tive impairment and dementia in old age: a prospective population based study.
BMJ 329, 539. doi: 10.1136/bmj.38181.418958.BE

Araki, Y., Nomura, M., Tanaka, H., Yamamoto, H., Yamamoto, T., Tsukaguchi, I.,
et al. (1994). MRI of the brain in diabetes mellitus. Neuroradiology 36, 101–103.
doi: 10.1007/BF00588069

Ashburner, J., and Friston, K. J. (2005). Unified segmentation. Neuroimage 26,
839–851. doi: 10.1016/j.neuroimage.2005.02.018

Biessels, G. J., Staekenborg, S., Brunner, E., Brayne, C., and Scheltens, P. (2006).
Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 5,
64–74. doi: 10.1016/S1474-4422(05)70284-2

Cheng, G., Huang, C., Deng, H., and Wang, H. (2012). Diabetes as a risk factor
for dementia and mild cognitive impairment: a meta-analysis of longitudinal
studies. Intern. Med. J. 42, 484–491. doi: 10.1111/j.1445-5994.2012.02758.x

Cuadra, M. B., Cammoun, L., Butz, T., Cuisenaire, O., and Thiran, J. P. (2005).
Comparison and validation of tissue modelization and statistical classifica-
tion methods in T1-weighted MR brain images. IEEE Trans. Med. Imaging 24,
1548–1565. doi: 10.1109/TMI.2005.857652

De Bresser, J., Tiehuis, A. M., Van Den Berg, E., Reijmer, Y. D., Jongen, C.,
Kappelle, L. J., et al. (2010). Progression of cerebral atrophy and white matter
hyperintensities in patients with type 2 diabetes. Diabetes Care 33, 1309–1314.
doi: 10.2337/dc09-1923

Erickson, K. I., Raji, C. A., Lopez, O. L., Becker, J. T., Rosano, C., Newman,
A. B., et al. (2010). Physical activity predicts gray matter volume in
late adulthood: the cardiovascular health study. Neurology 75, 1415–1422.
doi: 10.1212/WNL.0b013e3181f88359

Fisher, N. J., Tierney, M. C., Rourke, B. P., and Szalai, J. P. (2004). Verbal fluency pat-
terns in two subgroups of patients with Alzheimer’s disease. Clin. Neuropsychol.
18, 122–131. doi: 10.1080/13854040490507235

Franke, K., Gaser, C., and for the Alzheimer’s Disease Neuroimaging Initiative.
(2012a). Longitudinal changes in individual BrainAGE in healthy aging,
mild cognitive impairment, and Alzheimer’s disease. GeroPsych 25, 235–245.
doi: 10.1024/1662-9647/a000074

Franke, K., Luders, E., May, A., Wilke, M., and Gaser, C. (2012b). Brain maturation:
predicting individual BrainAGE in children and adolescents using structural
MRI. Neuroimage 63, 1305–1312. doi: 10.1016/j.neuroimage.2012.08.001

Franke, K., Ristow, M., Gaser, C., and for the Alzheimer’s Disease Neuroimaging
Initiative. (2013). “Gender-specific effects of health and lifestyle markers
on individual BrainAGE,” International Workshop on Pattern Recognition in
Neuroimaging (PRNI), IEEE Conference Proceedings (Philadelphia, PA), 94–97.
doi: 10.1109/PRNI.2013.33

Frontiers in Aging Neuroscience www.frontiersin.org December 2013 | Volume 5 | Article 90 | 8

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Franke et al. Advanced brain aging in diabetes

Franke, K., Ziegler, G., Klöppel, S., Gaser, C., and the Alzheimer’s Disease
Neuroimaging Initiative. (2010). Estimating the age of healthy subjects from T1-
weighted MRI scans using kernel methods: exploring the influence of various
parameters. Neuroimage 50, 883–892. doi: 10.1016/j.neuroimage.2010.01.005

Frisardi, V., Panza, F., Seripa, D., Imbimbo, B. P., Vendemiale, G., Pilotto, A.,
et al. (2010). Nutraceutical properties of Mediterranean diet and cognitive
decline: possible underlying mechanisms. J. Alzheimers Dis. 22, 715–740. doi:
10.3233/JAD-2010-100942

Gaser, C. (2009). Partial volume segmentation with adaptive maximum a posteriori
(MAP) approach. Neuroimage 47, S121. doi: 10.1016/S1053-8119(09)71151-6

Gaser, C., Franke, K., Kloppel, S., Koutsouleris, N., and Sauer, H. (2013). BrainAGE
in mild cognitive impaired patients: predicting the conversion to Alzheimer’s
Disease. PLoS ONE 8:e67346. doi: 10.1371/journal.pone.0067346

Gispen, W. H., and Biessels, G. J. (2000). Cognition and synaptic plastic-
ity in diabetes mellitus. Trends Neurosci. 23, 542–549. doi: 10.1016/S0166-
2236(00)01656-8

Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K.
J., and Frackowiak, R. S. (2001). A voxel-based morphometric study of
ageing in 465 normal adult human brains. Neuroimage 14, 21–36. doi:
10.1006/nimg.2001.0786

Hadjidemetriou, S., Lorenzen, P., Schuff, N., Mueller, S., and Weiner, M. (2008).
Computational atlases of severity of white matter lesions in elderly subjects with
MRI. Med. Image Comput. Comput. Assist. Interv. 11, 450–458. doi: 10.1007/978-
3-540-85988-8_54

Harrison, J. E., Buxton, P., Husain, M., and Wise, R. (2000). Short test of seman-
tic and phonological fluency: normal performance, validity and test-retest
reliability. Br. J. Clin. Psychol. 39, 181–191. doi: 10.1348/014466500163202

Heuser, I. (2002). Depression, endocrinologically a syndrome of premature aging?
Maturitas 41(Suppl. 1), S19–S23. doi: 10.1016/S0378-5122(02)00012-9

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scand. J.
Statist. 6, 65–70.

Janson, J., Laedtke, T., Parisi, J. E., O’brien, P., Petersen, R. C., and Butler, P. C.
(2004). Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53,
474–481. doi: 10.2337/diabetes.53.2.474

Katon, W., Lyles, C. R., Parker, M. M., Karter, A. J., Huang, E. S., and Whitmer, R.
A. (2012). Association of depression with increased risk of dementia in patients
with type 2 diabetes: the diabetes and aging study. Arch. Gen. Psychiatry 69,
410–417. doi: 10.1001/archgenpsychiatry.2011.154

Klöppel, S., Abdulkadir, A., Hadjidemetriou, S., Issleib, S., Frings, L., Thanh,
T. N., et al. (2011). A comparison of different automated methods for the
detection of white matter lesions in MRI data. Neuroimage 57, 416–422. doi:
10.1016/j.neuroimage.2011.04.053

Last, D., Alsop, D. C., Abduljalil, A. M., Marquis, R. P., De Bazelaire, C., Hu,
K., et al. (2007). Global and regional effects of type 2 diabetes on brain tis-
sue volumes and cerebral vasoreactivity. Diabetes Care 30, 1193–1199. doi:
10.2337/dc06-2052

Nepal, B., Brown, L., and Ranmuthugala, G. (2010). Modelling the impact of
modifying lifestyle risk factors on dementia prevalence in Australian popula-
tion aged 45 years and over, 2006–2051. Australas. J. Ageing 29, 111–116. doi:
10.1111/j.1741-6612.2010.00392.x

Novak, V., Zhao, P., Manor, B., Sejdic, E., Alsop, D., Abduljalil, A., et al. (2011).
Adhesion molecules, altered vasoreactivity, and brain atrophy in type 2 diabetes.
Diabetes Care 34, 2438–2441. doi: 10.2337/dc11-0969

Rajapakse, J. C., Giedd, J. N., and Rapoport, J. L. (1997). Statistical approach to
segmentation of single-channel cerebral MR images. IEEE Trans. Med. Imaging
16, 176–186. doi: 10.1109/42.563663

Reijmer, Y. D., Van Den Berg, E., De Bresser, J., Kessels, R. P., Kappelle, L. J., Algra,
A., et al. (2011). Accelerated cognitive decline in patients with type 2 diabetes:
MRI correlates and risk factors. Diabetes Metab. Res. Rev. 27, 195–202. doi:
10.1002/dmrr.1163

Schmidt, R., Launer, L. J., Nilsson, L. G., Pajak, A., Sans, S., Berger, K., et al.
(2004). Magnetic resonance imaging of the brain in diabetes: the Cardiovascular
Determinants of Dementia (CASCADE) Study. Diabetes 53, 687–692. doi:
10.2337/diabetes.53.3.687

Schölkopf, B., and Smola, A. (2002). Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA: MIT
Press.

Solfrizzi, V., Capurso, C., D’introno, A., Colacicco, A. M., Santamato, A., Ranieri,
M., et al. (2008). Lifestyle-related factors in predementia and dementia syn-
dromes. Expert Rev. Neurother. 8, 133–158. doi: 10.1586/14737175.8.1.133

Stewart, R., and Liolitsa, D. (1999). Type 2 diabetes mellitus, cognitive impairment
and dementia. Diabet. Med. 16, 93–112. doi: 10.1046/j.1464-5491.1999.00027.x

Tan, Z. S., Beiser, A. S., Fox, C. S., Au, R., Himali, J. J., Debette, S., et al. (2011).
Association of metabolic dysregulation with volumetric brain magnetic reso-
nance imaging and cognitive markers of subclinical brain aging in middle-aged
adults: the Framingham offspring study. Diabetes Care 34, 1766–1770. doi:
10.2337/dc11-0308

Tipping, M. E. (2001). Sparse bayesian learning and the relevance vector machine.
J. Mach. Learn. Res. 1, 211–244. doi: 10.1162/15324430152748236

Tobinick, E. L., and Gross, H. (2008). Rapid improvement in verbal fluency and
aphasia following perispinal etanercept in Alzheimer’s disease. BMC Neurol.
8:27. doi: 10.1186/1471-2377-8-27

Tohka, J., Zijdenbos, A., and Evans, A. (2004). Fast and robust parameter estimation
for statistical partial volume models in brain MRI. Neuroimage 23, 84–97. doi:
10.1016/j.neuroimage.2004.05.007

Tomlinson, D. R., and Gardiner, N. J. (2008). Glucose neurotoxicity. Nat. Rev.
Neurosci. 9, 36–45. doi: 10.1038/nrn2294

Van Elderen, S. G., De Roos, A., De Craen, A. J., Westendorp, R. G., Blauw, G.
J., Jukema, J. W., et al. (2010). Progression of brain atrophy and cognitive
decline in diabetes mellitus: a 3-year follow-up. Neurology 75, 997–1002. doi:
10.1212/WNL.0b013e3181f25f06

Velayudhan, L., Poppe, M., Archer, N., Proitsi, P., Brown, R. G., and Lovestone, S.
(2010). Risk of developing dementia in people with diabetes and mild cognitive
impairment. Br. J. Psychiatry 196, 36–40. doi: 10.1192/bjp.bp.109.067942

Wolkowitz, O. M., Epel, E. S., Reus, V. I., and Mellon, S. H. (2010). Depression
gets old fast: do stress and depression accelerate cell aging? Depress. Anxiety 27,
327–338. doi: 10.1002/da.20686

Wolkowitz, O. M., Reus, V. I., and Mellon, S. H. (2011). Of sound mind and body:
depression, disease, and accelerated aging. Dialogues Clin. Neurosci. 13, 25–39.
doi: 10.1002/da.20686

Xu, W. L., Qiu, C. X., Wahlin, A., Winblad, B., and Fratiglioni, L. (2004). Diabetes
mellitus and risk of dementia in the Kungsholmen project: a 6-year follow-up
study. Neurology 63, 1181–1186. doi: 10.1212/01.WNL.0000140291.86406.D1

Yesavage, J. A. (1988). Geriatric depression scale. Psychopharmacol. Bull. 24,
709–711.

Zhan, W., Zhang, Y., Mueller, S. G., Lorenzen, P., Hadjidemetriou, S., Schuff, N.,
et al. (2009). Characterization of white matter degeneration in elderly subjects
by magnetic resonance diffusion and FLAIR imaging correlation. Neuroimage
47(Suppl. 2), T58–T65. doi: 10.1016/j.neuroimage.2009.02.004

Zimmet, P., Alberti, K. G., and Shaw, J. (2001). Global and societal implications of
the diabetes epidemic. Nature 414, 782–787. doi: 10.1038/414782a

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 13 August 2013; accepted: 22 November 2013; published online: 17 December
2013.
Citation: Franke K, Gaser C, Manor B and Novak V (2013) Advanced BrainAGE in
older adults with type 2 diabetes mellitus. Front. Aging Neurosci. 5:90. doi: 10.3389/
fnagi.2013.00090
This article was submitted to the journal Frontiers in Aging Neuroscience.
Copyright © 2013 Franke, Gaser, Manor and Novak. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Aging Neuroscience www.frontiersin.org December 2013 | Volume 5 | Article 90 | 9

http://dx.doi.org/10.3389/fnagi.2013.00090
http://dx.doi.org/10.3389/fnagi.2013.00090
http://dx.doi.org/10.3389/fnagi.2013.00090
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive

	Advanced BrainAGE in older adults with type 2 diabetes mellitus
	Introduction
	Research Design and Methods
	Subjects
	Magnetic Resonance Imaging
	Preprocessing of MRI Data and Data Reduction
	Age Estimation Framework
	Statistical Analysis

	Results
	Group Characteristics
	Cross-Sectional BrainAGE Analyses
	Longitudinal BrainAGE Analyses

	Discussion
	Author Contributions
	Acknowledgments
	References


